• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_
16 #define ABSL_RANDOM_BETA_DISTRIBUTION_H_
17 
18 #include <cassert>
19 #include <cmath>
20 #include <istream>
21 #include <limits>
22 #include <ostream>
23 #include <type_traits>
24 
25 #include "absl/meta/type_traits.h"
26 #include "absl/random/internal/fast_uniform_bits.h"
27 #include "absl/random/internal/fastmath.h"
28 #include "absl/random/internal/generate_real.h"
29 #include "absl/random/internal/iostream_state_saver.h"
30 
31 namespace absl {
32 ABSL_NAMESPACE_BEGIN
33 
34 // absl::beta_distribution:
35 // Generate a floating-point variate conforming to a Beta distribution:
36 //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1),
37 // where the params alpha and beta are both strictly positive real values.
38 //
39 // The support is the open interval (0, 1), but the return value might be equal
40 // to 0 or 1, due to numerical errors when alpha and beta are very different.
41 //
42 // Usage note: One usage is that alpha and beta are counts of number of
43 // successes and failures. When the total number of trials are large, consider
44 // approximating a beta distribution with a Gaussian distribution with the same
45 // mean and variance. One could use the skewness, which depends only on the
46 // smaller of alpha and beta when the number of trials are sufficiently large,
47 // to quantify how far a beta distribution is from the normal distribution.
48 template <typename RealType = double>
49 class beta_distribution {
50  public:
51   using result_type = RealType;
52 
53   class param_type {
54    public:
55     using distribution_type = beta_distribution;
56 
param_type(result_type alpha,result_type beta)57     explicit param_type(result_type alpha, result_type beta)
58         : alpha_(alpha), beta_(beta) {
59       assert(alpha >= 0);
60       assert(beta >= 0);
61       assert(alpha <= (std::numeric_limits<result_type>::max)());
62       assert(beta <= (std::numeric_limits<result_type>::max)());
63       if (alpha == 0 || beta == 0) {
64         method_ = DEGENERATE_SMALL;
65         x_ = (alpha >= beta) ? 1 : 0;
66         return;
67       }
68       // a_ = min(beta, alpha), b_ = max(beta, alpha).
69       if (beta < alpha) {
70         inverted_ = true;
71         a_ = beta;
72         b_ = alpha;
73       } else {
74         inverted_ = false;
75         a_ = alpha;
76         b_ = beta;
77       }
78       if (a_ <= 1 && b_ >= ThresholdForLargeA()) {
79         method_ = DEGENERATE_SMALL;
80         x_ = inverted_ ? result_type(1) : result_type(0);
81         return;
82       }
83       // For threshold values, see also:
84       // Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al.
85       // February, 2009.
86       if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) {
87         // Choose Joehnk over Cheng when it's faster or when Cheng encounters
88         // numerical issues.
89         method_ = JOEHNK;
90         a_ = result_type(1) / alpha_;
91         b_ = result_type(1) / beta_;
92         if (std::isinf(a_) || std::isinf(b_)) {
93           method_ = DEGENERATE_SMALL;
94           x_ = inverted_ ? result_type(1) : result_type(0);
95         }
96         return;
97       }
98       if (a_ >= ThresholdForLargeA()) {
99         method_ = DEGENERATE_LARGE;
100         // Note: on PPC for long double, evaluating
101         // `std::numeric_limits::max() / ThresholdForLargeA` results in NaN.
102         result_type r = a_ / b_;
103         x_ = (inverted_ ? result_type(1) : r) / (1 + r);
104         return;
105       }
106       x_ = a_ + b_;
107       log_x_ = std::log(x_);
108       if (a_ <= 1) {
109         method_ = CHENG_BA;
110         y_ = result_type(1) / a_;
111         gamma_ = a_ + a_;
112         return;
113       }
114       method_ = CHENG_BB;
115       result_type r = (a_ - 1) / (b_ - 1);
116       y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1));
117       gamma_ = a_ + result_type(1) / y_;
118     }
119 
alpha()120     result_type alpha() const { return alpha_; }
beta()121     result_type beta() const { return beta_; }
122 
123     friend bool operator==(const param_type& a, const param_type& b) {
124       return a.alpha_ == b.alpha_ && a.beta_ == b.beta_;
125     }
126 
127     friend bool operator!=(const param_type& a, const param_type& b) {
128       return !(a == b);
129     }
130 
131    private:
132     friend class beta_distribution;
133 
134 #ifdef _MSC_VER
135     // MSVC does not have constexpr implementations for std::log and std::exp
136     // so they are computed at runtime.
137 #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
138 #else
139 #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr
140 #endif
141 
142     // The threshold for whether std::exp(1/a) is finite.
143     // Note that this value is quite large, and a smaller a_ is NOT abnormal.
144     static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
ThresholdForSmallA()145     ThresholdForSmallA() {
146       return result_type(1) /
147              std::log((std::numeric_limits<result_type>::max)());
148     }
149 
150     // The threshold for whether a * std::log(a) is finite.
151     static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type
ThresholdForLargeA()152     ThresholdForLargeA() {
153       return std::exp(
154           std::log((std::numeric_limits<result_type>::max)()) -
155           std::log(std::log((std::numeric_limits<result_type>::max)())) -
156           ThresholdPadding());
157     }
158 
159 #undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR
160 
161     // Pad the threshold for large A for long double on PPC. This is done via a
162     // template specialization below.
ThresholdPadding()163     static constexpr result_type ThresholdPadding() { return 0; }
164 
165     enum Method {
166       JOEHNK,    // Uses algorithm Joehnk
167       CHENG_BA,  // Uses algorithm BA in Cheng
168       CHENG_BB,  // Uses algorithm BB in Cheng
169 
170       // Note: See also:
171       //   Hung et al. Evaluation of beta generation algorithms. Communications
172       //   in Statistics-Simulation and Computation 38.4 (2009): 750-770.
173       // especially:
174       //   Zechner, Heinz, and Ernst Stadlober. Generating beta variates via
175       //   patchwork rejection. Computing 50.1 (1993): 1-18.
176 
177       DEGENERATE_SMALL,  // a_ is abnormally small.
178       DEGENERATE_LARGE,  // a_ is abnormally large.
179     };
180 
181     result_type alpha_;
182     result_type beta_;
183 
184     result_type a_;  // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK
185     result_type b_;  // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK
186     result_type x_;  // alpha + beta, or the result in degenerate cases
187     result_type log_x_;  // log(x_)
188     result_type y_;      // "beta" in Cheng
189     result_type gamma_;  // "gamma" in Cheng
190 
191     Method method_;
192 
193     // Placing this last for optimal alignment.
194     // Whether alpha_ != a_, i.e. true iff alpha_ > beta_.
195     bool inverted_;
196 
197     static_assert(std::is_floating_point<RealType>::value,
198                   "Class-template absl::beta_distribution<> must be "
199                   "parameterized using a floating-point type.");
200   };
201 
beta_distribution()202   beta_distribution() : beta_distribution(1) {}
203 
204   explicit beta_distribution(result_type alpha, result_type beta = 1)
param_(alpha,beta)205       : param_(alpha, beta) {}
206 
beta_distribution(const param_type & p)207   explicit beta_distribution(const param_type& p) : param_(p) {}
208 
reset()209   void reset() {}
210 
211   // Generating functions
212   template <typename URBG>
operator()213   result_type operator()(URBG& g) {  // NOLINT(runtime/references)
214     return (*this)(g, param_);
215   }
216 
217   template <typename URBG>
218   result_type operator()(URBG& g,  // NOLINT(runtime/references)
219                          const param_type& p);
220 
param()221   param_type param() const { return param_; }
param(const param_type & p)222   void param(const param_type& p) { param_ = p; }
223 
result_type(min)224   result_type(min)() const { return 0; }
result_type(max)225   result_type(max)() const { return 1; }
226 
alpha()227   result_type alpha() const { return param_.alpha(); }
beta()228   result_type beta() const { return param_.beta(); }
229 
230   friend bool operator==(const beta_distribution& a,
231                          const beta_distribution& b) {
232     return a.param_ == b.param_;
233   }
234   friend bool operator!=(const beta_distribution& a,
235                          const beta_distribution& b) {
236     return a.param_ != b.param_;
237   }
238 
239  private:
240   template <typename URBG>
241   result_type AlgorithmJoehnk(URBG& g,  // NOLINT(runtime/references)
242                               const param_type& p);
243 
244   template <typename URBG>
245   result_type AlgorithmCheng(URBG& g,  // NOLINT(runtime/references)
246                              const param_type& p);
247 
248   template <typename URBG>
DegenerateCase(URBG & g,const param_type & p)249   result_type DegenerateCase(URBG& g,  // NOLINT(runtime/references)
250                              const param_type& p) {
251     if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) {
252       // Returns 0 or 1 with equal probability.
253       random_internal::FastUniformBits<uint8_t> fast_u8;
254       return static_cast<result_type>((fast_u8(g) & 0x10) !=
255                                       0);  // pick any single bit.
256     }
257     return p.x_;
258   }
259 
260   param_type param_;
261   random_internal::FastUniformBits<uint64_t> fast_u64_;
262 };
263 
264 #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
265     defined(__ppc__) || defined(__PPC__)
266 // PPC needs a more stringent boundary for long double.
267 template <>
268 constexpr long double
ThresholdPadding()269 beta_distribution<long double>::param_type::ThresholdPadding() {
270   return 10;
271 }
272 #endif
273 
274 template <typename RealType>
275 template <typename URBG>
276 typename beta_distribution<RealType>::result_type
AlgorithmJoehnk(URBG & g,const param_type & p)277 beta_distribution<RealType>::AlgorithmJoehnk(
278     URBG& g,  // NOLINT(runtime/references)
279     const param_type& p) {
280   using random_internal::GeneratePositiveTag;
281   using random_internal::GenerateRealFromBits;
282   using real_type =
283       absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
284 
285   // Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten
286   // Zufallszahlen. Metrika 8.1 (1964): 5-15.
287   // This method is described in Knuth, Vol 2 (Third Edition), pp 134.
288 
289   result_type u, v, x, y, z;
290   for (;;) {
291     u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
292         fast_u64_(g));
293     v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
294         fast_u64_(g));
295 
296     // Direct method. std::pow is slow for float, so rely on the optimizer to
297     // remove the std::pow() path for that case.
298     if (!std::is_same<float, result_type>::value) {
299       x = std::pow(u, p.a_);
300       y = std::pow(v, p.b_);
301       z = x + y;
302       if (z > 1) {
303         // Reject if and only if `x + y > 1.0`
304         continue;
305       }
306       if (z > 0) {
307         // When both alpha and beta are small, x and y are both close to 0, so
308         // divide by (x+y) directly may result in nan.
309         return x / z;
310       }
311     }
312 
313     // Log transform.
314     // x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) )
315     // since u, v <= 1.0,  x, y < 0.
316     x = std::log(u) * p.a_;
317     y = std::log(v) * p.b_;
318     if (!std::isfinite(x) || !std::isfinite(y)) {
319       continue;
320     }
321     // z = log( pow(u, a) + pow(v, b) )
322     z = x > y ? (x + std::log(1 + std::exp(y - x)))
323               : (y + std::log(1 + std::exp(x - y)));
324     // Reject iff log(x+y) > 0.
325     if (z > 0) {
326       continue;
327     }
328     return std::exp(x - z);
329   }
330 }
331 
332 template <typename RealType>
333 template <typename URBG>
334 typename beta_distribution<RealType>::result_type
AlgorithmCheng(URBG & g,const param_type & p)335 beta_distribution<RealType>::AlgorithmCheng(
336     URBG& g,  // NOLINT(runtime/references)
337     const param_type& p) {
338   using random_internal::GeneratePositiveTag;
339   using random_internal::GenerateRealFromBits;
340   using real_type =
341       absl::conditional_t<std::is_same<RealType, float>::value, float, double>;
342 
343   // Based on Cheng, Russell CH. Generating beta variates with nonintegral
344   // shape parameters. Communications of the ACM 21.4 (1978): 317-322.
345   // (https://dl.acm.org/citation.cfm?id=359482).
346   static constexpr result_type kLogFour =
347       result_type(1.3862943611198906188344642429163531361);  // log(4)
348   static constexpr result_type kS =
349       result_type(2.6094379124341003746007593332261876);  // 1+log(5)
350 
351   const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA);
352   result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs;
353   for (;;) {
354     u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
355         fast_u64_(g));
356     u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>(
357         fast_u64_(g));
358     v = p.y_ * std::log(u1 / (1 - u1));
359     w = p.a_ * std::exp(v);
360     bw_inv = result_type(1) / (p.b_ + w);
361     r = p.gamma_ * v - kLogFour;
362     s = p.a_ + r - w;
363     z = u1 * u1 * u2;
364     if (!use_algorithm_ba && s + kS >= 5 * z) {
365       break;
366     }
367     t = std::log(z);
368     if (!use_algorithm_ba && s >= t) {
369       break;
370     }
371     lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r;
372     if (lhs >= t) {
373       break;
374     }
375   }
376   return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv;
377 }
378 
379 template <typename RealType>
380 template <typename URBG>
381 typename beta_distribution<RealType>::result_type
operator()382 beta_distribution<RealType>::operator()(URBG& g,  // NOLINT(runtime/references)
383                                         const param_type& p) {
384   switch (p.method_) {
385     case param_type::JOEHNK:
386       return AlgorithmJoehnk(g, p);
387     case param_type::CHENG_BA:
388       ABSL_FALLTHROUGH_INTENDED;
389     case param_type::CHENG_BB:
390       return AlgorithmCheng(g, p);
391     default:
392       return DegenerateCase(g, p);
393   }
394 }
395 
396 template <typename CharT, typename Traits, typename RealType>
397 std::basic_ostream<CharT, Traits>& operator<<(
398     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references)
399     const beta_distribution<RealType>& x) {
400   auto saver = random_internal::make_ostream_state_saver(os);
401   os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
402   os << x.alpha() << os.fill() << x.beta();
403   return os;
404 }
405 
406 template <typename CharT, typename Traits, typename RealType>
407 std::basic_istream<CharT, Traits>& operator>>(
408     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references)
409     beta_distribution<RealType>& x) {       // NOLINT(runtime/references)
410   using result_type = typename beta_distribution<RealType>::result_type;
411   using param_type = typename beta_distribution<RealType>::param_type;
412   result_type alpha, beta;
413 
414   auto saver = random_internal::make_istream_state_saver(is);
415   alpha = random_internal::read_floating_point<result_type>(is);
416   if (is.fail()) return is;
417   beta = random_internal::read_floating_point<result_type>(is);
418   if (!is.fail()) {
419     x.param(param_type(alpha, beta));
420   }
421   return is;
422 }
423 
424 ABSL_NAMESPACE_END
425 }  // namespace absl
426 
427 #endif  // ABSL_RANDOM_BETA_DISTRIBUTION_H_
428