• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/distributions.h"
16 
17 #include <cmath>
18 #include <cstdint>
19 #include <random>
20 #include <vector>
21 
22 #include "gtest/gtest.h"
23 #include "absl/random/internal/distribution_test_util.h"
24 #include "absl/random/random.h"
25 
26 namespace {
27 
28 constexpr int kSize = 400000;
29 
30 class RandomDistributionsTest : public testing::Test {};
31 
TEST_F(RandomDistributionsTest,UniformBoundFunctions)32 TEST_F(RandomDistributionsTest, UniformBoundFunctions) {
33   using absl::IntervalClosedClosed;
34   using absl::IntervalClosedOpen;
35   using absl::IntervalOpenClosed;
36   using absl::IntervalOpenOpen;
37   using absl::random_internal::uniform_lower_bound;
38   using absl::random_internal::uniform_upper_bound;
39 
40   // absl::uniform_int_distribution natively assumes IntervalClosedClosed
41   // absl::uniform_real_distribution natively assumes IntervalClosedOpen
42 
43   EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, 0, 100), 1);
44   EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, 0, 100), 1);
45   EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, 0, 1.0), 0);
46   EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, 0, 1.0), 0);
47   EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, 0, 1.0), 0);
48   EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, 0, 1.0), 0);
49 
50   EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, 0, 100), 0);
51   EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, 0, 100), 0);
52   EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, 0, 1.0), 0);
53   EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, 0, 1.0), 0);
54   EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, 0, 1.0), 0);
55   EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, 0, 1.0), 0);
56 
57   EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, 0, 100), 99);
58   EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, 0, 100), 99);
59   EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, 0, 1.0), 1.0);
60   EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, 0, 1.0), 1.0);
61   EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, 0, 1.0), 1.0);
62   EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, 0, 1.0), 1.0);
63 
64   EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, 0, 100), 100);
65   EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0, 100), 100);
66   EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, 0, 1.0), 1.0);
67   EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, 0, 1.0), 1.0);
68   EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, 0, 1.0), 1.0);
69   EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, 0, 1.0), 1.0);
70 
71   // Negative value tests
72   EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, -100, -1), -99);
73   EXPECT_EQ(uniform_lower_bound(IntervalOpenOpen, -100, -1), -99);
74   EXPECT_GT(uniform_lower_bound<float>(IntervalOpenClosed, -2.0, -1.0), -2.0);
75   EXPECT_GT(uniform_lower_bound<float>(IntervalOpenOpen, -2.0, -1.0), -2.0);
76   EXPECT_GT(uniform_lower_bound<double>(IntervalOpenClosed, -2.0, -1.0), -2.0);
77   EXPECT_GT(uniform_lower_bound<double>(IntervalOpenOpen, -2.0, -1.0), -2.0);
78 
79   EXPECT_EQ(uniform_lower_bound(IntervalClosedClosed, -100, -1), -100);
80   EXPECT_EQ(uniform_lower_bound(IntervalClosedOpen, -100, -1), -100);
81   EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedClosed, -2.0, -1.0), -2.0);
82   EXPECT_EQ(uniform_lower_bound<float>(IntervalClosedOpen, -2.0, -1.0), -2.0);
83   EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedClosed, -2.0, -1.0),
84             -2.0);
85   EXPECT_EQ(uniform_lower_bound<double>(IntervalClosedOpen, -2.0, -1.0), -2.0);
86 
87   EXPECT_EQ(uniform_upper_bound(IntervalOpenOpen, -100, -1), -2);
88   EXPECT_EQ(uniform_upper_bound(IntervalClosedOpen, -100, -1), -2);
89   EXPECT_EQ(uniform_upper_bound<float>(IntervalOpenOpen, -2.0, -1.0), -1.0);
90   EXPECT_EQ(uniform_upper_bound<float>(IntervalClosedOpen, -2.0, -1.0), -1.0);
91   EXPECT_EQ(uniform_upper_bound<double>(IntervalOpenOpen, -2.0, -1.0), -1.0);
92   EXPECT_EQ(uniform_upper_bound<double>(IntervalClosedOpen, -2.0, -1.0), -1.0);
93 
94   EXPECT_EQ(uniform_upper_bound(IntervalOpenClosed, -100, -1), -1);
95   EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, -100, -1), -1);
96   EXPECT_GT(uniform_upper_bound<float>(IntervalOpenClosed, -2.0, -1.0), -1.0);
97   EXPECT_GT(uniform_upper_bound<float>(IntervalClosedClosed, -2.0, -1.0), -1.0);
98   EXPECT_GT(uniform_upper_bound<double>(IntervalOpenClosed, -2.0, -1.0), -1.0);
99   EXPECT_GT(uniform_upper_bound<double>(IntervalClosedClosed, -2.0, -1.0),
100             -1.0);
101 
102   // Edge cases: the next value toward itself is itself.
103   const double d = 1.0;
104   const float f = 1.0;
105   EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, d, d), d);
106   EXPECT_EQ(uniform_lower_bound(IntervalOpenClosed, f, f), f);
107 
108   EXPECT_GT(uniform_lower_bound(IntervalOpenClosed, 1.0, 2.0), 1.0);
109   EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, +0.0), 1.0);
110   EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -0.0), 1.0);
111   EXPECT_LT(uniform_lower_bound(IntervalOpenClosed, 1.0, -1.0), 1.0);
112 
113   EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0f,
114                                 std::numeric_limits<float>::max()),
115             std::numeric_limits<float>::max());
116   EXPECT_EQ(uniform_upper_bound(IntervalClosedClosed, 0.0,
117                                 std::numeric_limits<double>::max()),
118             std::numeric_limits<double>::max());
119 }
120 
121 struct Invalid {};
122 
123 template <typename A, typename B>
124 auto InferredUniformReturnT(int)
125     -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
126                               std::declval<A>(), std::declval<B>()));
127 
128 template <typename, typename>
129 Invalid InferredUniformReturnT(...);
130 
131 template <typename TagType, typename A, typename B>
132 auto InferredTaggedUniformReturnT(int)
133     -> decltype(absl::Uniform(std::declval<TagType>(),
134                               std::declval<absl::InsecureBitGen&>(),
135                               std::declval<A>(), std::declval<B>()));
136 
137 template <typename, typename, typename>
138 Invalid InferredTaggedUniformReturnT(...);
139 
140 // Given types <A, B, Expect>, CheckArgsInferType() verifies that
141 //
142 //   absl::Uniform(gen, A{}, B{})
143 //
144 // returns the type "Expect".
145 //
146 // This interface can also be used to assert that a given absl::Uniform()
147 // overload does not exist / will not compile. Given types <A, B>, the
148 // expression
149 //
150 //   decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
151 //
152 // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
153 // resolve (via SFINAE) to the overload which returns type "Invalid". This
154 // allows tests to assert that an invocation such as
155 //
156 //   absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
157 //
158 // should not compile, since neither type, float nor int, can precisely
159 // represent both endpoint-values. Writing:
160 //
161 //   CheckArgsInferType<float, int, Invalid>()
162 //
163 // will assert that this overload does not exist.
164 template <typename A, typename B, typename Expect>
CheckArgsInferType()165 void CheckArgsInferType() {
166   static_assert(
167       absl::conjunction<
168           std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
169           std::is_same<Expect,
170                        decltype(InferredUniformReturnT<B, A>(0))>>::value,
171       "");
172   static_assert(
173       absl::conjunction<
174           std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
175                                         absl::IntervalOpenOpenTag, A, B>(0))>,
176           std::is_same<Expect,
177                        decltype(InferredTaggedUniformReturnT<
178                                 absl::IntervalOpenOpenTag, B, A>(0))>>::value,
179       "");
180 }
181 
182 template <typename A, typename B, typename ExplicitRet>
183 auto ExplicitUniformReturnT(int) -> decltype(
184     absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
185                                std::declval<A>(), std::declval<B>()));
186 
187 template <typename, typename, typename ExplicitRet>
188 Invalid ExplicitUniformReturnT(...);
189 
190 template <typename TagType, typename A, typename B, typename ExplicitRet>
191 auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
192     std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
193     std::declval<A>(), std::declval<B>()));
194 
195 template <typename, typename, typename, typename ExplicitRet>
196 Invalid ExplicitTaggedUniformReturnT(...);
197 
198 // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
199 //
200 //   absl::Uniform<Expect>(gen, A{}, B{})
201 //
202 // returns the type "Expect", and that the function-overload has the signature
203 //
204 //   Expect(URBG&, Expect, Expect)
205 template <typename A, typename B, typename Expect>
CheckArgsReturnExpectedType()206 void CheckArgsReturnExpectedType() {
207   static_assert(
208       absl::conjunction<
209           std::is_same<Expect,
210                        decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
211           std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
212                                    0))>>::value,
213       "");
214   static_assert(
215       absl::conjunction<
216           std::is_same<Expect,
217                        decltype(ExplicitTaggedUniformReturnT<
218                                 absl::IntervalOpenOpenTag, A, B, Expect>(0))>,
219           std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
220                                         absl::IntervalOpenOpenTag, B, A,
221                                         Expect>(0))>>::value,
222       "");
223 }
224 
TEST_F(RandomDistributionsTest,UniformTypeInference)225 TEST_F(RandomDistributionsTest, UniformTypeInference) {
226   // Infers common types.
227   CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
228   CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
229   CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
230   CheckArgsInferType<int16_t, int16_t, int16_t>();
231   CheckArgsInferType<int32_t, int32_t, int32_t>();
232   CheckArgsInferType<int64_t, int64_t, int64_t>();
233   CheckArgsInferType<float, float, float>();
234   CheckArgsInferType<double, double, double>();
235 
236   // Explicitly-specified return-values override inferences.
237   CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
238   CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
239   CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
240   CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
241   CheckArgsReturnExpectedType<int16_t, int32_t, double>();
242   CheckArgsReturnExpectedType<float, float, double>();
243   CheckArgsReturnExpectedType<int, int, int16_t>();
244 
245   // Properly promotes uint16_t.
246   CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
247   CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
248   CheckArgsInferType<uint16_t, int32_t, int32_t>();
249   CheckArgsInferType<uint16_t, int64_t, int64_t>();
250   CheckArgsInferType<uint16_t, float, float>();
251   CheckArgsInferType<uint16_t, double, double>();
252 
253   // Properly promotes int16_t.
254   CheckArgsInferType<int16_t, int32_t, int32_t>();
255   CheckArgsInferType<int16_t, int64_t, int64_t>();
256   CheckArgsInferType<int16_t, float, float>();
257   CheckArgsInferType<int16_t, double, double>();
258 
259   // Invalid (u)int16_t-pairings do not compile.
260   // See "CheckArgsInferType" comments above, for how this is achieved.
261   CheckArgsInferType<uint16_t, int16_t, Invalid>();
262   CheckArgsInferType<int16_t, uint32_t, Invalid>();
263   CheckArgsInferType<int16_t, uint64_t, Invalid>();
264 
265   // Properly promotes uint32_t.
266   CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
267   CheckArgsInferType<uint32_t, int64_t, int64_t>();
268   CheckArgsInferType<uint32_t, double, double>();
269 
270   // Properly promotes int32_t.
271   CheckArgsInferType<int32_t, int64_t, int64_t>();
272   CheckArgsInferType<int32_t, double, double>();
273 
274   // Invalid (u)int32_t-pairings do not compile.
275   CheckArgsInferType<uint32_t, int32_t, Invalid>();
276   CheckArgsInferType<int32_t, uint64_t, Invalid>();
277   CheckArgsInferType<int32_t, float, Invalid>();
278   CheckArgsInferType<uint32_t, float, Invalid>();
279 
280   // Invalid (u)int64_t-pairings do not compile.
281   CheckArgsInferType<uint64_t, int64_t, Invalid>();
282   CheckArgsInferType<int64_t, float, Invalid>();
283   CheckArgsInferType<int64_t, double, Invalid>();
284 
285   // Properly promotes float.
286   CheckArgsInferType<float, double, double>();
287 
288   // Examples.
289   absl::InsecureBitGen gen;
290   EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
291   EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
292   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
293                              static_cast<uint16_t>(0), 1.0f));
294   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
295   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
296   EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
297   EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
298   EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
299 }
300 
TEST_F(RandomDistributionsTest,UniformNoBounds)301 TEST_F(RandomDistributionsTest, UniformNoBounds) {
302   absl::InsecureBitGen gen;
303 
304   absl::Uniform<uint8_t>(gen);
305   absl::Uniform<uint16_t>(gen);
306   absl::Uniform<uint32_t>(gen);
307   absl::Uniform<uint64_t>(gen);
308 }
309 
310 // TODO(lar): Validate properties of non-default interval-semantics.
TEST_F(RandomDistributionsTest,UniformReal)311 TEST_F(RandomDistributionsTest, UniformReal) {
312   std::vector<double> values(kSize);
313 
314   absl::InsecureBitGen gen;
315   for (int i = 0; i < kSize; i++) {
316     values[i] = absl::Uniform(gen, 0, 1.0);
317   }
318 
319   const auto moments =
320       absl::random_internal::ComputeDistributionMoments(values);
321   EXPECT_NEAR(0.5, moments.mean, 0.02);
322   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
323   EXPECT_NEAR(0.0, moments.skewness, 0.02);
324   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
325 }
326 
TEST_F(RandomDistributionsTest,UniformInt)327 TEST_F(RandomDistributionsTest, UniformInt) {
328   std::vector<double> values(kSize);
329 
330   absl::InsecureBitGen gen;
331   for (int i = 0; i < kSize; i++) {
332     const int64_t kMax = 1000000000000ll;
333     int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
334     // convert to double.
335     values[i] = static_cast<double>(j) / static_cast<double>(kMax);
336   }
337 
338   const auto moments =
339       absl::random_internal::ComputeDistributionMoments(values);
340   EXPECT_NEAR(0.5, moments.mean, 0.02);
341   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
342   EXPECT_NEAR(0.0, moments.skewness, 0.02);
343   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
344 
345   /*
346   // NOTE: These are not supported by absl::Uniform, which is specialized
347   // on integer and real valued types.
348 
349   enum E { E0, E1 };    // enum
350   enum S : int { S0, S1 };    // signed enum
351   enum U : unsigned int { U0, U1 };  // unsigned enum
352 
353   absl::Uniform(gen, E0, E1);
354   absl::Uniform(gen, S0, S1);
355   absl::Uniform(gen, U0, U1);
356   */
357 }
358 
TEST_F(RandomDistributionsTest,Exponential)359 TEST_F(RandomDistributionsTest, Exponential) {
360   std::vector<double> values(kSize);
361 
362   absl::InsecureBitGen gen;
363   for (int i = 0; i < kSize; i++) {
364     values[i] = absl::Exponential<double>(gen);
365   }
366 
367   const auto moments =
368       absl::random_internal::ComputeDistributionMoments(values);
369   EXPECT_NEAR(1.0, moments.mean, 0.02);
370   EXPECT_NEAR(1.0, moments.variance, 0.025);
371   EXPECT_NEAR(2.0, moments.skewness, 0.1);
372   EXPECT_LT(5.0, moments.kurtosis);
373 }
374 
TEST_F(RandomDistributionsTest,PoissonDefault)375 TEST_F(RandomDistributionsTest, PoissonDefault) {
376   std::vector<double> values(kSize);
377 
378   absl::InsecureBitGen gen;
379   for (int i = 0; i < kSize; i++) {
380     values[i] = absl::Poisson<int64_t>(gen);
381   }
382 
383   const auto moments =
384       absl::random_internal::ComputeDistributionMoments(values);
385   EXPECT_NEAR(1.0, moments.mean, 0.02);
386   EXPECT_NEAR(1.0, moments.variance, 0.02);
387   EXPECT_NEAR(1.0, moments.skewness, 0.025);
388   EXPECT_LT(2.0, moments.kurtosis);
389 }
390 
TEST_F(RandomDistributionsTest,PoissonLarge)391 TEST_F(RandomDistributionsTest, PoissonLarge) {
392   constexpr double kMean = 100000000.0;
393   std::vector<double> values(kSize);
394 
395   absl::InsecureBitGen gen;
396   for (int i = 0; i < kSize; i++) {
397     values[i] = absl::Poisson<int64_t>(gen, kMean);
398   }
399 
400   const auto moments =
401       absl::random_internal::ComputeDistributionMoments(values);
402   EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
403   EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
404   EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
405   EXPECT_LT(2.0, moments.kurtosis);
406 }
407 
TEST_F(RandomDistributionsTest,Bernoulli)408 TEST_F(RandomDistributionsTest, Bernoulli) {
409   constexpr double kP = 0.5151515151;
410   std::vector<double> values(kSize);
411 
412   absl::InsecureBitGen gen;
413   for (int i = 0; i < kSize; i++) {
414     values[i] = absl::Bernoulli(gen, kP);
415   }
416 
417   const auto moments =
418       absl::random_internal::ComputeDistributionMoments(values);
419   EXPECT_NEAR(kP, moments.mean, 0.01);
420 }
421 
TEST_F(RandomDistributionsTest,Beta)422 TEST_F(RandomDistributionsTest, Beta) {
423   constexpr double kAlpha = 2.0;
424   constexpr double kBeta = 3.0;
425   std::vector<double> values(kSize);
426 
427   absl::InsecureBitGen gen;
428   for (int i = 0; i < kSize; i++) {
429     values[i] = absl::Beta(gen, kAlpha, kBeta);
430   }
431 
432   const auto moments =
433       absl::random_internal::ComputeDistributionMoments(values);
434   EXPECT_NEAR(0.4, moments.mean, 0.01);
435 }
436 
TEST_F(RandomDistributionsTest,Zipf)437 TEST_F(RandomDistributionsTest, Zipf) {
438   std::vector<double> values(kSize);
439 
440   absl::InsecureBitGen gen;
441   for (int i = 0; i < kSize; i++) {
442     values[i] = absl::Zipf<int64_t>(gen, 100);
443   }
444 
445   // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
446   // Given the parameter v = 1, this gives the following function:
447   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
448   const auto moments =
449       absl::random_internal::ComputeDistributionMoments(values);
450   EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
451 }
452 
TEST_F(RandomDistributionsTest,Gaussian)453 TEST_F(RandomDistributionsTest, Gaussian) {
454   std::vector<double> values(kSize);
455 
456   absl::InsecureBitGen gen;
457   for (int i = 0; i < kSize; i++) {
458     values[i] = absl::Gaussian<double>(gen);
459   }
460 
461   const auto moments =
462       absl::random_internal::ComputeDistributionMoments(values);
463   EXPECT_NEAR(0.0, moments.mean, 0.02);
464   EXPECT_NEAR(1.0, moments.variance, 0.04);
465   EXPECT_NEAR(0, moments.skewness, 0.2);
466   EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
467 }
468 
TEST_F(RandomDistributionsTest,LogUniform)469 TEST_F(RandomDistributionsTest, LogUniform) {
470   std::vector<double> values(kSize);
471 
472   absl::InsecureBitGen gen;
473   for (int i = 0; i < kSize; i++) {
474     values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
475   }
476 
477   // The mean is the sum of the fractional means of the uniform distributions:
478   // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
479   // [64..127][128..255][256..511][512..1023]
480   const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
481                        64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
482                       (2.0 * 11.0);
483 
484   const auto moments =
485       absl::random_internal::ComputeDistributionMoments(values);
486   EXPECT_NEAR(mean, moments.mean, 2) << moments;
487 }
488 
489 }  // namespace
490