1 // Copyright 2017 The Abseil Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // https://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 #ifndef ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ 16 #define ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ 17 18 #include <algorithm> 19 #include <cinttypes> 20 #include <cstdlib> 21 #include <iostream> 22 #include <iterator> 23 #include <limits> 24 #include <type_traits> 25 26 #include "absl/meta/type_traits.h" 27 #include "absl/random/internal/iostream_state_saver.h" 28 #include "absl/random/internal/randen.h" 29 30 namespace absl { 31 ABSL_NAMESPACE_BEGIN 32 namespace random_internal { 33 34 // Deterministic pseudorandom byte generator with backtracking resistance 35 // (leaking the state does not compromise prior outputs). Based on Reverie 36 // (see "A Robust and Sponge-Like PRNG with Improved Efficiency") instantiated 37 // with an improved Simpira-like permutation. 38 // Returns values of type "T" (must be a built-in unsigned integer type). 39 // 40 // RANDen = RANDom generator or beetroots in Swiss High German. 41 // 'Strong' (well-distributed, unpredictable, backtracking-resistant) random 42 // generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32. 43 template <typename T> 44 class alignas(16) randen_engine { 45 public: 46 // C++11 URBG interface: 47 using result_type = T; 48 static_assert(std::is_unsigned<result_type>::value, 49 "randen_engine template argument must be a built-in unsigned " 50 "integer type"); 51 result_type(min)52 static constexpr result_type(min)() { 53 return (std::numeric_limits<result_type>::min)(); 54 } 55 result_type(max)56 static constexpr result_type(max)() { 57 return (std::numeric_limits<result_type>::max)(); 58 } 59 60 explicit randen_engine(result_type seed_value = 0) { seed(seed_value); } 61 62 template <class SeedSequence, 63 typename = typename absl::enable_if_t< 64 !std::is_same<SeedSequence, randen_engine>::value>> randen_engine(SeedSequence && seq)65 explicit randen_engine(SeedSequence&& seq) { 66 seed(seq); 67 } 68 69 randen_engine(const randen_engine&) = default; 70 71 // Returns random bits from the buffer in units of result_type. operator()72 result_type operator()() { 73 // Refill the buffer if needed (unlikely). 74 if (next_ >= kStateSizeT) { 75 next_ = kCapacityT; 76 impl_.Generate(state_); 77 } 78 79 return state_[next_++]; 80 } 81 82 template <class SeedSequence> 83 typename absl::enable_if_t< 84 !std::is_convertible<SeedSequence, result_type>::value> seed(SeedSequence && seq)85 seed(SeedSequence&& seq) { 86 // Zeroes the state. 87 seed(); 88 reseed(seq); 89 } 90 91 void seed(result_type seed_value = 0) { 92 next_ = kStateSizeT; 93 // Zeroes the inner state and fills the outer state with seed_value to 94 // mimics behaviour of reseed 95 std::fill(std::begin(state_), std::begin(state_) + kCapacityT, 0); 96 std::fill(std::begin(state_) + kCapacityT, std::end(state_), seed_value); 97 } 98 99 // Inserts entropy into (part of) the state. Calling this periodically with 100 // sufficient entropy ensures prediction resistance (attackers cannot predict 101 // future outputs even if state is compromised). 102 template <class SeedSequence> reseed(SeedSequence & seq)103 void reseed(SeedSequence& seq) { 104 using sequence_result_type = typename SeedSequence::result_type; 105 static_assert(sizeof(sequence_result_type) == 4, 106 "SeedSequence::result_type must be 32-bit"); 107 108 constexpr size_t kBufferSize = 109 Randen::kSeedBytes / sizeof(sequence_result_type); 110 alignas(16) sequence_result_type buffer[kBufferSize]; 111 112 // Randen::Absorb XORs the seed into state, which is then mixed by a call 113 // to Randen::Generate. Seeding with only the provided entropy is preferred 114 // to using an arbitrary generate() call, so use [rand.req.seed_seq] 115 // size as a proxy for the number of entropy units that can be generated 116 // without relying on seed sequence mixing... 117 const size_t entropy_size = seq.size(); 118 if (entropy_size < kBufferSize) { 119 // ... and only request that many values, or 256-bits, when unspecified. 120 const size_t requested_entropy = (entropy_size == 0) ? 8u : entropy_size; 121 std::fill(std::begin(buffer) + requested_entropy, std::end(buffer), 0); 122 seq.generate(std::begin(buffer), std::begin(buffer) + requested_entropy); 123 // The Randen paper suggests preferentially initializing even-numbered 124 // 128-bit vectors of the randen state (there are 16 such vectors). 125 // The seed data is merged into the state offset by 128-bits, which 126 // implies prefering seed bytes [16..31, ..., 208..223]. Since the 127 // buffer is 32-bit values, we swap the corresponding buffer positions in 128 // 128-bit chunks. 129 size_t dst = kBufferSize; 130 while (dst > 7) { 131 // leave the odd bucket as-is. 132 dst -= 4; 133 size_t src = dst >> 1; 134 // swap 128-bits into the even bucket 135 std::swap(buffer[--dst], buffer[--src]); 136 std::swap(buffer[--dst], buffer[--src]); 137 std::swap(buffer[--dst], buffer[--src]); 138 std::swap(buffer[--dst], buffer[--src]); 139 } 140 } else { 141 seq.generate(std::begin(buffer), std::end(buffer)); 142 } 143 impl_.Absorb(buffer, state_); 144 145 // Generate will be called when operator() is called 146 next_ = kStateSizeT; 147 } 148 discard(uint64_t count)149 void discard(uint64_t count) { 150 uint64_t step = std::min<uint64_t>(kStateSizeT - next_, count); 151 count -= step; 152 153 constexpr uint64_t kRateT = kStateSizeT - kCapacityT; 154 while (count > 0) { 155 next_ = kCapacityT; 156 impl_.Generate(state_); 157 step = std::min<uint64_t>(kRateT, count); 158 count -= step; 159 } 160 next_ += step; 161 } 162 163 bool operator==(const randen_engine& other) const { 164 return next_ == other.next_ && 165 std::equal(std::begin(state_), std::end(state_), 166 std::begin(other.state_)); 167 } 168 169 bool operator!=(const randen_engine& other) const { 170 return !(*this == other); 171 } 172 173 template <class CharT, class Traits> 174 friend std::basic_ostream<CharT, Traits>& operator<<( 175 std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) 176 const randen_engine<T>& engine) { // NOLINT(runtime/references) 177 using numeric_type = 178 typename random_internal::stream_format_type<result_type>::type; 179 auto saver = random_internal::make_ostream_state_saver(os); 180 for (const auto& elem : engine.state_) { 181 // In the case that `elem` is `uint8_t`, it must be cast to something 182 // larger so that it prints as an integer rather than a character. For 183 // simplicity, apply the cast all circumstances. 184 os << static_cast<numeric_type>(elem) << os.fill(); 185 } 186 os << engine.next_; 187 return os; 188 } 189 190 template <class CharT, class Traits> 191 friend std::basic_istream<CharT, Traits>& operator>>( 192 std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) 193 randen_engine<T>& engine) { // NOLINT(runtime/references) 194 using numeric_type = 195 typename random_internal::stream_format_type<result_type>::type; 196 result_type state[kStateSizeT]; 197 size_t next; 198 for (auto& elem : state) { 199 // It is not possible to read uint8_t from wide streams, so it is 200 // necessary to read a wider type and then cast it to uint8_t. 201 numeric_type value; 202 is >> value; 203 elem = static_cast<result_type>(value); 204 } 205 is >> next; 206 if (is.fail()) { 207 return is; 208 } 209 std::memcpy(engine.state_, state, sizeof(engine.state_)); 210 engine.next_ = next; 211 return is; 212 } 213 214 private: 215 static constexpr size_t kStateSizeT = 216 Randen::kStateBytes / sizeof(result_type); 217 static constexpr size_t kCapacityT = 218 Randen::kCapacityBytes / sizeof(result_type); 219 220 // First kCapacityT are `inner', the others are accessible random bits. 221 alignas(16) result_type state_[kStateSizeT]; 222 size_t next_; // index within state_ 223 Randen impl_; 224 }; 225 226 } // namespace random_internal 227 ABSL_NAMESPACE_END 228 } // namespace absl 229 230 #endif // ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ 231