• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /* @(#) $Id$ */
7 
8 #include "zutil.h"
9 
10 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
11 
12 #define BASE 65521U     /* largest prime smaller than 65536 */
13 #define NMAX 5552
14 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
15 
16 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
17 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
18 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
19 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
20 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
21 
22 /* use NO_DIVIDE if your processor does not do division in hardware --
23    try it both ways to see which is faster */
24 #ifdef NO_DIVIDE
25 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
26    (thank you to John Reiser for pointing this out) */
27 #  define CHOP(a) \
28     do { \
29         unsigned long tmp = a >> 16; \
30         a &= 0xffffUL; \
31         a += (tmp << 4) - tmp; \
32     } while (0)
33 #  define MOD28(a) \
34     do { \
35         CHOP(a); \
36         if (a >= BASE) a -= BASE; \
37     } while (0)
38 #  define MOD(a) \
39     do { \
40         CHOP(a); \
41         MOD28(a); \
42     } while (0)
43 #  define MOD63(a) \
44     do { /* this assumes a is not negative */ \
45         z_off64_t tmp = a >> 32; \
46         a &= 0xffffffffL; \
47         a += (tmp << 8) - (tmp << 5) + tmp; \
48         tmp = a >> 16; \
49         a &= 0xffffL; \
50         a += (tmp << 4) - tmp; \
51         tmp = a >> 16; \
52         a &= 0xffffL; \
53         a += (tmp << 4) - tmp; \
54         if (a >= BASE) a -= BASE; \
55     } while (0)
56 #else
57 #  define MOD(a) a %= BASE
58 #  define MOD28(a) a %= BASE
59 #  define MOD63(a) a %= BASE
60 #endif
61 
62 #include "cpu_features.h"
63 #if defined(ADLER32_SIMD_SSSE3) || defined(ADLER32_SIMD_NEON)
64 #include "adler32_simd.h"
65 #endif
66 
67 /* ========================================================================= */
adler32_z(adler,buf,len)68 uLong ZEXPORT adler32_z(adler, buf, len)
69     uLong adler;
70     const Bytef *buf;
71     z_size_t len;
72 {
73     unsigned long sum2;
74     unsigned n;
75 
76 #if defined(ADLER32_SIMD_SSSE3)
77     if (buf != Z_NULL && len >= 64 && x86_cpu_enable_ssse3)
78         return adler32_simd_(adler, buf, len);
79 #elif defined(ADLER32_SIMD_NEON)
80     if (buf != Z_NULL && len >= 64)
81         return adler32_simd_(adler, buf, len);
82 #endif
83 
84     /* split Adler-32 into component sums */
85     sum2 = (adler >> 16) & 0xffff;
86     adler &= 0xffff;
87 
88     /* in case user likes doing a byte at a time, keep it fast */
89     if (len == 1) {
90         adler += buf[0];
91         if (adler >= BASE)
92             adler -= BASE;
93         sum2 += adler;
94         if (sum2 >= BASE)
95             sum2 -= BASE;
96         return adler | (sum2 << 16);
97     }
98 
99 #if defined(ADLER32_SIMD_SSSE3)
100     /*
101      * Use SSSE3 to compute the adler32. Since this routine can be
102      * freely used, check CPU features here. zlib convention is to
103      * call adler32(0, NULL, 0), before making calls to adler32().
104      * So this is a good early (and infrequent) place to cache CPU
105      * features for those later, more interesting adler32() calls.
106      */
107     if (buf == Z_NULL) {
108         if (!len) /* Assume user is calling adler32(0, NULL, 0); */
109             cpu_check_features();
110         return 1L;
111     }
112 #else
113     /* initial Adler-32 value (deferred check for len == 1 speed) */
114     if (buf == Z_NULL)
115         return 1L;
116 #endif
117 
118     /* in case short lengths are provided, keep it somewhat fast */
119     if (len < 16) {
120         while (len--) {
121             adler += *buf++;
122             sum2 += adler;
123         }
124         if (adler >= BASE)
125             adler -= BASE;
126         MOD28(sum2);            /* only added so many BASE's */
127         return adler | (sum2 << 16);
128     }
129 
130     /* do length NMAX blocks -- requires just one modulo operation */
131     while (len >= NMAX) {
132         len -= NMAX;
133         n = NMAX / 16;          /* NMAX is divisible by 16 */
134         do {
135             DO16(buf);          /* 16 sums unrolled */
136             buf += 16;
137         } while (--n);
138         MOD(adler);
139         MOD(sum2);
140     }
141 
142     /* do remaining bytes (less than NMAX, still just one modulo) */
143     if (len) {                  /* avoid modulos if none remaining */
144         while (len >= 16) {
145             len -= 16;
146             DO16(buf);
147             buf += 16;
148         }
149         while (len--) {
150             adler += *buf++;
151             sum2 += adler;
152         }
153         MOD(adler);
154         MOD(sum2);
155     }
156 
157     /* return recombined sums */
158     return adler | (sum2 << 16);
159 }
160 
161 /* ========================================================================= */
adler32(adler,buf,len)162 uLong ZEXPORT adler32(adler, buf, len)
163     uLong adler;
164     const Bytef *buf;
165     uInt len;
166 {
167     return adler32_z(adler, buf, len);
168 }
169 
170 /* ========================================================================= */
adler32_combine_(adler1,adler2,len2)171 local uLong adler32_combine_(adler1, adler2, len2)
172     uLong adler1;
173     uLong adler2;
174     z_off64_t len2;
175 {
176     unsigned long sum1;
177     unsigned long sum2;
178     unsigned rem;
179 
180     /* for negative len, return invalid adler32 as a clue for debugging */
181     if (len2 < 0)
182         return 0xffffffffUL;
183 
184     /* the derivation of this formula is left as an exercise for the reader */
185     MOD63(len2);                /* assumes len2 >= 0 */
186     rem = (unsigned)len2;
187     sum1 = adler1 & 0xffff;
188     sum2 = rem * sum1;
189     MOD(sum2);
190     sum1 += (adler2 & 0xffff) + BASE - 1;
191     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
192     if (sum1 >= BASE) sum1 -= BASE;
193     if (sum1 >= BASE) sum1 -= BASE;
194     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
195     if (sum2 >= BASE) sum2 -= BASE;
196     return sum1 | (sum2 << 16);
197 }
198 
199 /* ========================================================================= */
adler32_combine(adler1,adler2,len2)200 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
201     uLong adler1;
202     uLong adler2;
203     z_off_t len2;
204 {
205     return adler32_combine_(adler1, adler2, len2);
206 }
207 
adler32_combine64(adler1,adler2,len2)208 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
209     uLong adler1;
210     uLong adler2;
211     z_off64_t len2;
212 {
213     return adler32_combine_(adler1, adler2, len2);
214 }
215