1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <SurfaceFlingerProperties.sysprop.h>
18 #include <android-base/stringprintf.h>
19 #include <compositionengine/CompositionEngine.h>
20 #include <compositionengine/CompositionRefreshArgs.h>
21 #include <compositionengine/DisplayColorProfile.h>
22 #include <compositionengine/LayerFE.h>
23 #include <compositionengine/LayerFECompositionState.h>
24 #include <compositionengine/RenderSurface.h>
25 #include <compositionengine/impl/Output.h>
26 #include <compositionengine/impl/OutputCompositionState.h>
27 #include <compositionengine/impl/OutputLayer.h>
28 #include <compositionengine/impl/OutputLayerCompositionState.h>
29 #include <compositionengine/impl/planner/Planner.h>
30
31 #include <thread>
32
33 #include "renderengine/ExternalTexture.h"
34
35 // TODO(b/129481165): remove the #pragma below and fix conversion issues
36 #pragma clang diagnostic push
37 #pragma clang diagnostic ignored "-Wconversion"
38
39 #include <renderengine/DisplaySettings.h>
40 #include <renderengine/RenderEngine.h>
41
42 // TODO(b/129481165): remove the #pragma below and fix conversion issues
43 #pragma clang diagnostic pop // ignored "-Wconversion"
44
45 #include <android-base/properties.h>
46 #include <ui/DebugUtils.h>
47 #include <ui/HdrCapabilities.h>
48 #include <utils/Trace.h>
49
50 #include "TracedOrdinal.h"
51
52 namespace android::compositionengine {
53
54 Output::~Output() = default;
55
56 namespace impl {
57
58 namespace {
59
60 template <typename T>
61 class Reversed {
62 public:
Reversed(const T & container)63 explicit Reversed(const T& container) : mContainer(container) {}
begin()64 auto begin() { return mContainer.rbegin(); }
end()65 auto end() { return mContainer.rend(); }
66
67 private:
68 const T& mContainer;
69 };
70
71 // Helper for enumerating over a container in reverse order
72 template <typename T>
reversed(const T & c)73 Reversed<T> reversed(const T& c) {
74 return Reversed<T>(c);
75 }
76
77 struct ScaleVector {
78 float x;
79 float y;
80 };
81
82 // Returns a ScaleVector (x, y) such that from.scale(x, y) = to',
83 // where to' will have the same size as "to". In the case where "from" and "to"
84 // start at the origin to'=to.
getScale(const Rect & from,const Rect & to)85 ScaleVector getScale(const Rect& from, const Rect& to) {
86 return {.x = static_cast<float>(to.width()) / from.width(),
87 .y = static_cast<float>(to.height()) / from.height()};
88 }
89
90 } // namespace
91
createOutput(const compositionengine::CompositionEngine & compositionEngine)92 std::shared_ptr<Output> createOutput(
93 const compositionengine::CompositionEngine& compositionEngine) {
94 return createOutputTemplated<Output>(compositionEngine);
95 }
96
97 Output::~Output() = default;
98
isValid() const99 bool Output::isValid() const {
100 return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
101 mRenderSurface->isValid();
102 }
103
getDisplayId() const104 std::optional<DisplayId> Output::getDisplayId() const {
105 return {};
106 }
107
getName() const108 const std::string& Output::getName() const {
109 return mName;
110 }
111
setName(const std::string & name)112 void Output::setName(const std::string& name) {
113 mName = name;
114 }
115
setCompositionEnabled(bool enabled)116 void Output::setCompositionEnabled(bool enabled) {
117 auto& outputState = editState();
118 if (outputState.isEnabled == enabled) {
119 return;
120 }
121
122 outputState.isEnabled = enabled;
123 dirtyEntireOutput();
124 }
125
setLayerCachingEnabled(bool enabled)126 void Output::setLayerCachingEnabled(bool enabled) {
127 if (enabled == (mPlanner != nullptr)) {
128 return;
129 }
130
131 if (enabled) {
132 mPlanner = std::make_unique<planner::Planner>(getCompositionEngine().getRenderEngine());
133 if (mRenderSurface) {
134 mPlanner->setDisplaySize(mRenderSurface->getSize());
135 }
136 } else {
137 mPlanner.reset();
138 }
139
140 for (auto* outputLayer : getOutputLayersOrderedByZ()) {
141 if (!outputLayer) {
142 continue;
143 }
144
145 outputLayer->editState().overrideInfo = {};
146 }
147 }
148
setProjection(ui::Rotation orientation,const Rect & layerStackSpaceRect,const Rect & orientedDisplaySpaceRect)149 void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect,
150 const Rect& orientedDisplaySpaceRect) {
151 auto& outputState = editState();
152
153 outputState.displaySpace.orientation = orientation;
154 LOG_FATAL_IF(outputState.displaySpace.bounds == Rect::INVALID_RECT,
155 "The display bounds are unknown.");
156
157 // Compute orientedDisplaySpace
158 ui::Size orientedSize = outputState.displaySpace.bounds.getSize();
159 if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
160 std::swap(orientedSize.width, orientedSize.height);
161 }
162 outputState.orientedDisplaySpace.bounds = Rect(orientedSize);
163 outputState.orientedDisplaySpace.content = orientedDisplaySpaceRect;
164
165 // Compute displaySpace.content
166 const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation);
167 ui::Transform rotation;
168 if (transformOrientationFlags != ui::Transform::ROT_INVALID) {
169 const auto displaySize = outputState.displaySpace.bounds;
170 rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height());
171 }
172 outputState.displaySpace.content = rotation.transform(orientedDisplaySpaceRect);
173
174 // Compute framebufferSpace
175 outputState.framebufferSpace.orientation = orientation;
176 LOG_FATAL_IF(outputState.framebufferSpace.bounds == Rect::INVALID_RECT,
177 "The framebuffer bounds are unknown.");
178 const auto scale =
179 getScale(outputState.displaySpace.bounds, outputState.framebufferSpace.bounds);
180 outputState.framebufferSpace.content = outputState.displaySpace.content.scale(scale.x, scale.y);
181
182 // Compute layerStackSpace
183 outputState.layerStackSpace.content = layerStackSpaceRect;
184 outputState.layerStackSpace.bounds = layerStackSpaceRect;
185
186 outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace);
187 outputState.needsFiltering = outputState.transform.needsBilinearFiltering();
188 dirtyEntireOutput();
189 }
190
setDisplaySize(const ui::Size & size)191 void Output::setDisplaySize(const ui::Size& size) {
192 mRenderSurface->setDisplaySize(size);
193
194 auto& state = editState();
195
196 // Update framebuffer space
197 const Rect newBounds(size);
198 state.framebufferSpace.bounds = newBounds;
199
200 // Update display space
201 state.displaySpace.bounds = newBounds;
202 state.transform = state.layerStackSpace.getTransform(state.displaySpace);
203
204 // Update oriented display space
205 const auto orientation = state.displaySpace.orientation;
206 ui::Size orientedSize = size;
207 if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
208 std::swap(orientedSize.width, orientedSize.height);
209 }
210 const Rect newOrientedBounds(orientedSize);
211 state.orientedDisplaySpace.bounds = newOrientedBounds;
212
213 if (mPlanner) {
214 mPlanner->setDisplaySize(size);
215 }
216
217 dirtyEntireOutput();
218 }
219
getTransformHint() const220 ui::Transform::RotationFlags Output::getTransformHint() const {
221 return static_cast<ui::Transform::RotationFlags>(getState().transform.getOrientation());
222 }
223
setLayerStackFilter(uint32_t layerStackId,bool isInternal)224 void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) {
225 auto& outputState = editState();
226 outputState.layerStackId = layerStackId;
227 outputState.layerStackInternal = isInternal;
228
229 dirtyEntireOutput();
230 }
231
setColorTransform(const compositionengine::CompositionRefreshArgs & args)232 void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
233 auto& colorTransformMatrix = editState().colorTransformMatrix;
234 if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
235 return;
236 }
237
238 colorTransformMatrix = *args.colorTransformMatrix;
239
240 dirtyEntireOutput();
241 }
242
setColorProfile(const ColorProfile & colorProfile)243 void Output::setColorProfile(const ColorProfile& colorProfile) {
244 ui::Dataspace targetDataspace =
245 getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
246 colorProfile.colorSpaceAgnosticDataspace);
247
248 auto& outputState = editState();
249 if (outputState.colorMode == colorProfile.mode &&
250 outputState.dataspace == colorProfile.dataspace &&
251 outputState.renderIntent == colorProfile.renderIntent &&
252 outputState.targetDataspace == targetDataspace) {
253 return;
254 }
255
256 outputState.colorMode = colorProfile.mode;
257 outputState.dataspace = colorProfile.dataspace;
258 outputState.renderIntent = colorProfile.renderIntent;
259 outputState.targetDataspace = targetDataspace;
260
261 mRenderSurface->setBufferDataspace(colorProfile.dataspace);
262
263 ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
264 decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
265 decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
266
267 dirtyEntireOutput();
268 }
269
setDisplayBrightness(float sdrWhitePointNits,float displayBrightnessNits)270 void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) {
271 auto& outputState = editState();
272 if (outputState.sdrWhitePointNits == sdrWhitePointNits &&
273 outputState.displayBrightnessNits == displayBrightnessNits) {
274 // Nothing changed
275 return;
276 }
277 outputState.sdrWhitePointNits = sdrWhitePointNits;
278 outputState.displayBrightnessNits = displayBrightnessNits;
279 dirtyEntireOutput();
280 }
281
dump(std::string & out) const282 void Output::dump(std::string& out) const {
283 using android::base::StringAppendF;
284
285 StringAppendF(&out, " Composition Output State: [\"%s\"]", mName.c_str());
286
287 out.append("\n ");
288
289 dumpBase(out);
290 }
291
dumpBase(std::string & out) const292 void Output::dumpBase(std::string& out) const {
293 dumpState(out);
294
295 if (mDisplayColorProfile) {
296 mDisplayColorProfile->dump(out);
297 } else {
298 out.append(" No display color profile!\n");
299 }
300
301 if (mRenderSurface) {
302 mRenderSurface->dump(out);
303 } else {
304 out.append(" No render surface!\n");
305 }
306
307 android::base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount());
308 for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
309 if (!outputLayer) {
310 continue;
311 }
312 outputLayer->dump(out);
313 }
314 }
315
dumpPlannerInfo(const Vector<String16> & args,std::string & out) const316 void Output::dumpPlannerInfo(const Vector<String16>& args, std::string& out) const {
317 if (!mPlanner) {
318 base::StringAppendF(&out, "Planner is disabled\n");
319 return;
320 }
321 base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str());
322 mPlanner->dump(args, out);
323 }
324
getDisplayColorProfile() const325 compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
326 return mDisplayColorProfile.get();
327 }
328
setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode)329 void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
330 mDisplayColorProfile = std::move(mode);
331 }
332
getReleasedLayersForTest() const333 const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
334 return mReleasedLayers;
335 }
336
setDisplayColorProfileForTest(std::unique_ptr<compositionengine::DisplayColorProfile> mode)337 void Output::setDisplayColorProfileForTest(
338 std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
339 mDisplayColorProfile = std::move(mode);
340 }
341
getRenderSurface() const342 compositionengine::RenderSurface* Output::getRenderSurface() const {
343 return mRenderSurface.get();
344 }
345
setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface)346 void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
347 mRenderSurface = std::move(surface);
348 const auto size = mRenderSurface->getSize();
349 editState().framebufferSpace.bounds = Rect(size);
350 if (mPlanner) {
351 mPlanner->setDisplaySize(size);
352 }
353 dirtyEntireOutput();
354 }
355
cacheClientCompositionRequests(uint32_t cacheSize)356 void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
357 if (cacheSize == 0) {
358 mClientCompositionRequestCache.reset();
359 } else {
360 mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
361 }
362 };
363
setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface)364 void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
365 mRenderSurface = std::move(surface);
366 }
367
getDirtyRegion(bool repaintEverything) const368 Region Output::getDirtyRegion(bool repaintEverything) const {
369 const auto& outputState = getState();
370 Region dirty(outputState.layerStackSpace.content);
371 if (!repaintEverything) {
372 dirty.andSelf(outputState.dirtyRegion);
373 }
374 return dirty;
375 }
376
belongsInOutput(std::optional<uint32_t> layerStackId,bool internalOnly) const377 bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const {
378 // The layerStackId's must match, and also the layer must not be internal
379 // only when not on an internal output.
380 const auto& outputState = getState();
381 return layerStackId && (*layerStackId == outputState.layerStackId) &&
382 (!internalOnly || outputState.layerStackInternal);
383 }
384
belongsInOutput(const sp<compositionengine::LayerFE> & layerFE) const385 bool Output::belongsInOutput(const sp<compositionengine::LayerFE>& layerFE) const {
386 const auto* layerFEState = layerFE->getCompositionState();
387 return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly);
388 }
389
createOutputLayer(const sp<LayerFE> & layerFE) const390 std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
391 const sp<LayerFE>& layerFE) const {
392 return impl::createOutputLayer(*this, layerFE);
393 }
394
getOutputLayerForLayer(const sp<LayerFE> & layerFE) const395 compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
396 auto index = findCurrentOutputLayerForLayer(layerFE);
397 return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
398 }
399
findCurrentOutputLayerForLayer(const sp<compositionengine::LayerFE> & layer) const400 std::optional<size_t> Output::findCurrentOutputLayerForLayer(
401 const sp<compositionengine::LayerFE>& layer) const {
402 for (size_t i = 0; i < getOutputLayerCount(); i++) {
403 auto outputLayer = getOutputLayerOrderedByZByIndex(i);
404 if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
405 return i;
406 }
407 }
408 return std::nullopt;
409 }
410
setReleasedLayers(Output::ReleasedLayers && layers)411 void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
412 mReleasedLayers = std::move(layers);
413 }
414
prepare(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & geomSnapshots)415 void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
416 LayerFESet& geomSnapshots) {
417 ATRACE_CALL();
418 ALOGV(__FUNCTION__);
419
420 rebuildLayerStacks(refreshArgs, geomSnapshots);
421 }
422
present(const compositionengine::CompositionRefreshArgs & refreshArgs)423 void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
424 ATRACE_CALL();
425 ALOGV(__FUNCTION__);
426
427 updateColorProfile(refreshArgs);
428 updateCompositionState(refreshArgs);
429 planComposition();
430 writeCompositionState(refreshArgs);
431 setColorTransform(refreshArgs);
432 beginFrame();
433 prepareFrame();
434 devOptRepaintFlash(refreshArgs);
435 finishFrame(refreshArgs);
436 postFramebuffer();
437 renderCachedSets(refreshArgs);
438 }
439
rebuildLayerStacks(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & layerFESet)440 void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
441 LayerFESet& layerFESet) {
442 ATRACE_CALL();
443 ALOGV(__FUNCTION__);
444
445 auto& outputState = editState();
446
447 // Do nothing if this output is not enabled or there is no need to perform this update
448 if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
449 return;
450 }
451
452 // Process the layers to determine visibility and coverage
453 compositionengine::Output::CoverageState coverage{layerFESet};
454 collectVisibleLayers(refreshArgs, coverage);
455
456 // Compute the resulting coverage for this output, and store it for later
457 const ui::Transform& tr = outputState.transform;
458 Region undefinedRegion{outputState.displaySpace.bounds};
459 undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
460
461 outputState.undefinedRegion = undefinedRegion;
462 outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
463 }
464
collectVisibleLayers(const compositionengine::CompositionRefreshArgs & refreshArgs,compositionengine::Output::CoverageState & coverage)465 void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
466 compositionengine::Output::CoverageState& coverage) {
467 // Evaluate the layers from front to back to determine what is visible. This
468 // also incrementally calculates the coverage information for each layer as
469 // well as the entire output.
470 for (auto layer : reversed(refreshArgs.layers)) {
471 // Incrementally process the coverage for each layer
472 ensureOutputLayerIfVisible(layer, coverage);
473
474 // TODO(b/121291683): Stop early if the output is completely covered and
475 // no more layers could even be visible underneath the ones on top.
476 }
477
478 setReleasedLayers(refreshArgs);
479
480 finalizePendingOutputLayers();
481 }
482
ensureOutputLayerIfVisible(sp<compositionengine::LayerFE> & layerFE,compositionengine::Output::CoverageState & coverage)483 void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
484 compositionengine::Output::CoverageState& coverage) {
485 // Ensure we have a snapshot of the basic geometry layer state. Limit the
486 // snapshots to once per frame for each candidate layer, as layers may
487 // appear on multiple outputs.
488 if (!coverage.latchedLayers.count(layerFE)) {
489 coverage.latchedLayers.insert(layerFE);
490 layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry);
491 }
492
493 // Only consider the layers on the given layer stack
494 if (!belongsInOutput(layerFE)) {
495 return;
496 }
497
498 // Obtain a read-only pointer to the front-end layer state
499 const auto* layerFEState = layerFE->getCompositionState();
500 if (CC_UNLIKELY(!layerFEState)) {
501 return;
502 }
503
504 // handle hidden surfaces by setting the visible region to empty
505 if (CC_UNLIKELY(!layerFEState->isVisible)) {
506 return;
507 }
508
509 /*
510 * opaqueRegion: area of a surface that is fully opaque.
511 */
512 Region opaqueRegion;
513
514 /*
515 * visibleRegion: area of a surface that is visible on screen and not fully
516 * transparent. This is essentially the layer's footprint minus the opaque
517 * regions above it. Areas covered by a translucent surface are considered
518 * visible.
519 */
520 Region visibleRegion;
521
522 /*
523 * coveredRegion: area of a surface that is covered by all visible regions
524 * above it (which includes the translucent areas).
525 */
526 Region coveredRegion;
527
528 /*
529 * transparentRegion: area of a surface that is hinted to be completely
530 * transparent. This is only used to tell when the layer has no visible non-
531 * transparent regions and can be removed from the layer list. It does not
532 * affect the visibleRegion of this layer or any layers beneath it. The hint
533 * may not be correct if apps don't respect the SurfaceView restrictions
534 * (which, sadly, some don't).
535 */
536 Region transparentRegion;
537
538 /*
539 * shadowRegion: Region cast by the layer's shadow.
540 */
541 Region shadowRegion;
542
543 const ui::Transform& tr = layerFEState->geomLayerTransform;
544
545 // Get the visible region
546 // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
547 // for computations like this?
548 const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
549 visibleRegion.set(visibleRect);
550
551 if (layerFEState->shadowRadius > 0.0f) {
552 // if the layer casts a shadow, offset the layers visible region and
553 // calculate the shadow region.
554 const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
555 Rect visibleRectWithShadows(visibleRect);
556 visibleRectWithShadows.inset(inset, inset, inset, inset);
557 visibleRegion.set(visibleRectWithShadows);
558 shadowRegion = visibleRegion.subtract(visibleRect);
559 }
560
561 if (visibleRegion.isEmpty()) {
562 return;
563 }
564
565 // Remove the transparent area from the visible region
566 if (!layerFEState->isOpaque) {
567 if (tr.preserveRects()) {
568 // transform the transparent region
569 transparentRegion = tr.transform(layerFEState->transparentRegionHint);
570 } else {
571 // transformation too complex, can't do the
572 // transparent region optimization.
573 transparentRegion.clear();
574 }
575 }
576
577 // compute the opaque region
578 const auto layerOrientation = tr.getOrientation();
579 if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
580 // If we one of the simple category of transforms (0/90/180/270 rotation
581 // + any flip), then the opaque region is the layer's footprint.
582 // Otherwise we don't try and compute the opaque region since there may
583 // be errors at the edges, and we treat the entire layer as
584 // translucent.
585 opaqueRegion.set(visibleRect);
586 }
587
588 // Clip the covered region to the visible region
589 coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
590
591 // Update accumAboveCoveredLayers for next (lower) layer
592 coverage.aboveCoveredLayers.orSelf(visibleRegion);
593
594 // subtract the opaque region covered by the layers above us
595 visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
596
597 if (visibleRegion.isEmpty()) {
598 return;
599 }
600
601 // Get coverage information for the layer as previously displayed,
602 // also taking over ownership from mOutputLayersorderedByZ.
603 auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
604 auto prevOutputLayer =
605 prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
606
607 // Get coverage information for the layer as previously displayed
608 // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
609 const Region kEmptyRegion;
610 const Region& oldVisibleRegion =
611 prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
612 const Region& oldCoveredRegion =
613 prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
614
615 // compute this layer's dirty region
616 Region dirty;
617 if (layerFEState->contentDirty) {
618 // we need to invalidate the whole region
619 dirty = visibleRegion;
620 // as well, as the old visible region
621 dirty.orSelf(oldVisibleRegion);
622 } else {
623 /* compute the exposed region:
624 * the exposed region consists of two components:
625 * 1) what's VISIBLE now and was COVERED before
626 * 2) what's EXPOSED now less what was EXPOSED before
627 *
628 * note that (1) is conservative, we start with the whole visible region
629 * but only keep what used to be covered by something -- which mean it
630 * may have been exposed.
631 *
632 * (2) handles areas that were not covered by anything but got exposed
633 * because of a resize.
634 *
635 */
636 const Region newExposed = visibleRegion - coveredRegion;
637 const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
638 dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
639 }
640 dirty.subtractSelf(coverage.aboveOpaqueLayers);
641
642 // accumulate to the screen dirty region
643 coverage.dirtyRegion.orSelf(dirty);
644
645 // Update accumAboveOpaqueLayers for next (lower) layer
646 coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
647
648 // Compute the visible non-transparent region
649 Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
650
651 // Perform the final check to see if this layer is visible on this output
652 // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
653 const auto& outputState = getState();
654 Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
655 drawRegion.andSelf(outputState.displaySpace.bounds);
656 if (drawRegion.isEmpty()) {
657 return;
658 }
659
660 Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
661
662 // The layer is visible. Either reuse the existing outputLayer if we have
663 // one, or create a new one if we do not.
664 auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
665
666 // Store the layer coverage information into the layer state as some of it
667 // is useful later.
668 auto& outputLayerState = result->editState();
669 outputLayerState.visibleRegion = visibleRegion;
670 outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
671 outputLayerState.coveredRegion = coveredRegion;
672 outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform(
673 visibleNonShadowRegion.intersect(outputState.layerStackSpace.content));
674 outputLayerState.shadowRegion = shadowRegion;
675 }
676
setReleasedLayers(const compositionengine::CompositionRefreshArgs &)677 void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
678 // The base class does nothing with this call.
679 }
680
updateLayerStateFromFE(const CompositionRefreshArgs & args) const681 void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const {
682 for (auto* layer : getOutputLayersOrderedByZ()) {
683 layer->getLayerFE().prepareCompositionState(
684 args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent
685 : LayerFE::StateSubset::Content);
686 }
687 }
688
updateCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)689 void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
690 ATRACE_CALL();
691 ALOGV(__FUNCTION__);
692
693 if (!getState().isEnabled) {
694 return;
695 }
696
697 mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
698 bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
699
700 for (auto* layer : getOutputLayersOrderedByZ()) {
701 layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
702 refreshArgs.devOptForceClientComposition ||
703 forceClientComposition,
704 refreshArgs.internalDisplayRotationFlags);
705
706 if (mLayerRequestingBackgroundBlur == layer) {
707 forceClientComposition = false;
708 }
709 }
710 }
711
planComposition()712 void Output::planComposition() {
713 if (!mPlanner || !getState().isEnabled) {
714 return;
715 }
716
717 ATRACE_CALL();
718 ALOGV(__FUNCTION__);
719
720 mPlanner->plan(getOutputLayersOrderedByZ());
721 }
722
writeCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)723 void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
724 ATRACE_CALL();
725 ALOGV(__FUNCTION__);
726
727 if (!getState().isEnabled) {
728 return;
729 }
730
731 editState().earliestPresentTime = refreshArgs.earliestPresentTime;
732 editState().previousPresentFence = refreshArgs.previousPresentFence;
733
734 compositionengine::OutputLayer* peekThroughLayer = nullptr;
735 sp<GraphicBuffer> previousOverride = nullptr;
736 bool includeGeometry = refreshArgs.updatingGeometryThisFrame;
737 uint32_t z = 0;
738 bool overrideZ = false;
739 for (auto* layer : getOutputLayersOrderedByZ()) {
740 if (layer == peekThroughLayer) {
741 // No longer needed, although it should not show up again, so
742 // resetting it is not truly needed either.
743 peekThroughLayer = nullptr;
744
745 // peekThroughLayer was already drawn ahead of its z order.
746 continue;
747 }
748 bool skipLayer = false;
749 const auto& overrideInfo = layer->getState().overrideInfo;
750 if (overrideInfo.buffer != nullptr) {
751 if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) {
752 ALOGV("Skipping redundant buffer");
753 skipLayer = true;
754 } else {
755 // First layer with the override buffer.
756 if (overrideInfo.peekThroughLayer) {
757 peekThroughLayer = overrideInfo.peekThroughLayer;
758
759 // Draw peekThroughLayer first.
760 overrideZ = true;
761 includeGeometry = true;
762 constexpr bool isPeekingThrough = true;
763 peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ,
764 isPeekingThrough);
765 }
766
767 previousOverride = overrideInfo.buffer->getBuffer();
768 }
769 }
770
771 constexpr bool isPeekingThrough = false;
772 layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough);
773 }
774 }
775
findLayerRequestingBackgroundComposition() const776 compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
777 compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
778 for (auto* layer : getOutputLayersOrderedByZ()) {
779 auto* compState = layer->getLayerFE().getCompositionState();
780
781 // If any layer has a sideband stream, we will disable blurs. In that case, we don't
782 // want to force client composition because of the blur.
783 if (compState->sidebandStream != nullptr) {
784 return nullptr;
785 }
786 if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) {
787 layerRequestingBgComposition = layer;
788 }
789 }
790 return layerRequestingBgComposition;
791 }
792
updateColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs)793 void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
794 setColorProfile(pickColorProfile(refreshArgs));
795 }
796
797 // Returns a data space that fits all visible layers. The returned data space
798 // can only be one of
799 // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
800 // - Dataspace::DISPLAY_P3
801 // - Dataspace::DISPLAY_BT2020
802 // The returned HDR data space is one of
803 // - Dataspace::UNKNOWN
804 // - Dataspace::BT2020_HLG
805 // - Dataspace::BT2020_PQ
getBestDataspace(ui::Dataspace * outHdrDataSpace,bool * outIsHdrClientComposition) const806 ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
807 bool* outIsHdrClientComposition) const {
808 ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
809 *outHdrDataSpace = ui::Dataspace::UNKNOWN;
810
811 for (const auto* layer : getOutputLayersOrderedByZ()) {
812 switch (layer->getLayerFE().getCompositionState()->dataspace) {
813 case ui::Dataspace::V0_SCRGB:
814 case ui::Dataspace::V0_SCRGB_LINEAR:
815 case ui::Dataspace::BT2020:
816 case ui::Dataspace::BT2020_ITU:
817 case ui::Dataspace::BT2020_LINEAR:
818 case ui::Dataspace::DISPLAY_BT2020:
819 bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
820 break;
821 case ui::Dataspace::DISPLAY_P3:
822 bestDataSpace = ui::Dataspace::DISPLAY_P3;
823 break;
824 case ui::Dataspace::BT2020_PQ:
825 case ui::Dataspace::BT2020_ITU_PQ:
826 bestDataSpace = ui::Dataspace::DISPLAY_P3;
827 *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
828 *outIsHdrClientComposition =
829 layer->getLayerFE().getCompositionState()->forceClientComposition;
830 break;
831 case ui::Dataspace::BT2020_HLG:
832 case ui::Dataspace::BT2020_ITU_HLG:
833 bestDataSpace = ui::Dataspace::DISPLAY_P3;
834 // When there's mixed PQ content and HLG content, we set the HDR
835 // data space to be BT2020_PQ and convert HLG to PQ.
836 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
837 *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
838 }
839 break;
840 default:
841 break;
842 }
843 }
844
845 return bestDataSpace;
846 }
847
pickColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs) const848 compositionengine::Output::ColorProfile Output::pickColorProfile(
849 const compositionengine::CompositionRefreshArgs& refreshArgs) const {
850 if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
851 return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
852 ui::RenderIntent::COLORIMETRIC,
853 refreshArgs.colorSpaceAgnosticDataspace};
854 }
855
856 ui::Dataspace hdrDataSpace;
857 bool isHdrClientComposition = false;
858 ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
859
860 switch (refreshArgs.forceOutputColorMode) {
861 case ui::ColorMode::SRGB:
862 bestDataSpace = ui::Dataspace::V0_SRGB;
863 break;
864 case ui::ColorMode::DISPLAY_P3:
865 bestDataSpace = ui::Dataspace::DISPLAY_P3;
866 break;
867 default:
868 break;
869 }
870
871 // respect hdrDataSpace only when there is no legacy HDR support
872 const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
873 !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
874 if (isHdr) {
875 bestDataSpace = hdrDataSpace;
876 }
877
878 ui::RenderIntent intent;
879 switch (refreshArgs.outputColorSetting) {
880 case OutputColorSetting::kManaged:
881 case OutputColorSetting::kUnmanaged:
882 intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
883 : ui::RenderIntent::COLORIMETRIC;
884 break;
885 case OutputColorSetting::kEnhanced:
886 intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
887 break;
888 default: // vendor display color setting
889 intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
890 break;
891 }
892
893 ui::ColorMode outMode;
894 ui::Dataspace outDataSpace;
895 ui::RenderIntent outRenderIntent;
896 mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
897 &outRenderIntent);
898
899 return ColorProfile{outMode, outDataSpace, outRenderIntent,
900 refreshArgs.colorSpaceAgnosticDataspace};
901 }
902
beginFrame()903 void Output::beginFrame() {
904 auto& outputState = editState();
905 const bool dirty = !getDirtyRegion(false).isEmpty();
906 const bool empty = getOutputLayerCount() == 0;
907 const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
908
909 // If nothing has changed (!dirty), don't recompose.
910 // If something changed, but we don't currently have any visible layers,
911 // and didn't when we last did a composition, then skip it this time.
912 // The second rule does two things:
913 // - When all layers are removed from a display, we'll emit one black
914 // frame, then nothing more until we get new layers.
915 // - When a display is created with a private layer stack, we won't
916 // emit any black frames until a layer is added to the layer stack.
917 const bool mustRecompose = dirty && !(empty && wasEmpty);
918
919 const char flagPrefix[] = {'-', '+'};
920 static_cast<void>(flagPrefix);
921 ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__,
922 mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
923 flagPrefix[empty], flagPrefix[wasEmpty]);
924
925 mRenderSurface->beginFrame(mustRecompose);
926
927 if (mustRecompose) {
928 outputState.lastCompositionHadVisibleLayers = !empty;
929 }
930 }
931
prepareFrame()932 void Output::prepareFrame() {
933 ATRACE_CALL();
934 ALOGV(__FUNCTION__);
935
936 const auto& outputState = getState();
937 if (!outputState.isEnabled) {
938 return;
939 }
940
941 chooseCompositionStrategy();
942
943 if (mPlanner) {
944 mPlanner->reportFinalPlan(getOutputLayersOrderedByZ());
945 }
946
947 mRenderSurface->prepareFrame(outputState.usesClientComposition,
948 outputState.usesDeviceComposition);
949 }
950
devOptRepaintFlash(const compositionengine::CompositionRefreshArgs & refreshArgs)951 void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
952 if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
953 return;
954 }
955
956 if (getState().isEnabled) {
957 // transform the dirty region into this screen's coordinate space
958 const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything);
959 if (!dirtyRegion.isEmpty()) {
960 base::unique_fd readyFence;
961 // redraw the whole screen
962 static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs));
963
964 mRenderSurface->queueBuffer(std::move(readyFence));
965 }
966 }
967
968 postFramebuffer();
969
970 std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
971
972 prepareFrame();
973 }
974
finishFrame(const compositionengine::CompositionRefreshArgs & refreshArgs)975 void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) {
976 ATRACE_CALL();
977 ALOGV(__FUNCTION__);
978
979 if (!getState().isEnabled) {
980 return;
981 }
982
983 // Repaint the framebuffer (if needed), getting the optional fence for when
984 // the composition completes.
985 auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs);
986 if (!optReadyFence) {
987 return;
988 }
989
990 // swap buffers (presentation)
991 mRenderSurface->queueBuffer(std::move(*optReadyFence));
992 }
993
composeSurfaces(const Region & debugRegion,const compositionengine::CompositionRefreshArgs & refreshArgs)994 std::optional<base::unique_fd> Output::composeSurfaces(
995 const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) {
996 ATRACE_CALL();
997 ALOGV(__FUNCTION__);
998
999 const auto& outputState = getState();
1000 OutputCompositionState& outputCompositionState = editState();
1001 const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition",
1002 outputState.usesClientComposition};
1003
1004 auto& renderEngine = getCompositionEngine().getRenderEngine();
1005 const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1006
1007 // If we the display is secure, protected content support is enabled, and at
1008 // least one layer has protected content, we need to use a secure back
1009 // buffer.
1010 if (outputState.isSecure && supportsProtectedContent) {
1011 auto layers = getOutputLayersOrderedByZ();
1012 bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
1013 return layer->getLayerFE().getCompositionState()->hasProtectedContent;
1014 });
1015 if (needsProtected != renderEngine.isProtected()) {
1016 renderEngine.useProtectedContext(needsProtected);
1017 }
1018 if (needsProtected != mRenderSurface->isProtected() &&
1019 needsProtected == renderEngine.isProtected()) {
1020 mRenderSurface->setProtected(needsProtected);
1021 }
1022 } else if (!outputState.isSecure && renderEngine.isProtected()) {
1023 renderEngine.useProtectedContext(false);
1024 }
1025
1026 base::unique_fd fd;
1027
1028 std::shared_ptr<renderengine::ExternalTexture> tex;
1029
1030 // If we aren't doing client composition on this output, but do have a
1031 // flipClientTarget request for this frame on this output, we still need to
1032 // dequeue a buffer.
1033 if (hasClientComposition || outputState.flipClientTarget) {
1034 tex = mRenderSurface->dequeueBuffer(&fd);
1035 if (tex == nullptr) {
1036 ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
1037 "client composition for this frame",
1038 mName.c_str());
1039 return {};
1040 }
1041 }
1042
1043 base::unique_fd readyFence;
1044 if (!hasClientComposition) {
1045 setExpensiveRenderingExpected(false);
1046 return readyFence;
1047 }
1048
1049 ALOGV("hasClientComposition");
1050
1051 renderengine::DisplaySettings clientCompositionDisplay;
1052 clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.content;
1053 clientCompositionDisplay.clip = outputState.layerStackSpace.content;
1054 clientCompositionDisplay.orientation =
1055 ui::Transform::toRotationFlags(outputState.displaySpace.orientation);
1056 clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
1057 ? outputState.dataspace
1058 : ui::Dataspace::UNKNOWN;
1059
1060 // If we have a valid current display brightness use that, otherwise fall back to the
1061 // display's max desired
1062 clientCompositionDisplay.maxLuminance = outputState.displayBrightnessNits > 0.f
1063 ? outputState.displayBrightnessNits
1064 : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1065 clientCompositionDisplay.sdrWhitePointNits = outputState.sdrWhitePointNits;
1066
1067 // Compute the global color transform matrix.
1068 if (!outputState.usesDeviceComposition && !getSkipColorTransform()) {
1069 clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
1070 }
1071
1072 // Note: Updated by generateClientCompositionRequests
1073 clientCompositionDisplay.clearRegion = Region::INVALID_REGION;
1074
1075 // Generate the client composition requests for the layers on this output.
1076 std::vector<LayerFE::LayerSettings> clientCompositionLayers =
1077 generateClientCompositionRequests(supportsProtectedContent,
1078 clientCompositionDisplay.clearRegion,
1079 clientCompositionDisplay.outputDataspace);
1080 appendRegionFlashRequests(debugRegion, clientCompositionLayers);
1081
1082 // Check if the client composition requests were rendered into the provided graphic buffer. If
1083 // so, we can reuse the buffer and avoid client composition.
1084 if (mClientCompositionRequestCache) {
1085 if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(),
1086 clientCompositionDisplay,
1087 clientCompositionLayers)) {
1088 outputCompositionState.reusedClientComposition = true;
1089 setExpensiveRenderingExpected(false);
1090 return readyFence;
1091 }
1092 mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay,
1093 clientCompositionLayers);
1094 }
1095
1096 // We boost GPU frequency here because there will be color spaces conversion
1097 // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
1098 // GPU composition can finish in time. We must reset GPU frequency afterwards,
1099 // because high frequency consumes extra battery.
1100 const bool expensiveBlurs =
1101 refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr;
1102 const bool expensiveRenderingExpected =
1103 clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs;
1104 if (expensiveRenderingExpected) {
1105 setExpensiveRenderingExpected(true);
1106 }
1107
1108 std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers;
1109 clientCompositionLayerPointers.reserve(clientCompositionLayers.size());
1110 std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1111 std::back_inserter(clientCompositionLayerPointers),
1112 [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* {
1113 return &settings;
1114 });
1115
1116 const nsecs_t renderEngineStart = systemTime();
1117 // Only use the framebuffer cache when rendering to an internal display
1118 // TODO(b/173560331): This is only to help mitigate memory leaks from virtual displays because
1119 // right now we don't have a concrete eviction policy for output buffers: GLESRenderEngine
1120 // bounds its framebuffer cache but Skia RenderEngine has no current policy. The best fix is
1121 // probably to encapsulate the output buffer into a structure that dispatches resource cleanup
1122 // over to RenderEngine, in which case this flag can be removed from the drawLayers interface.
1123 const bool useFramebufferCache = outputState.layerStackInternal;
1124 status_t status =
1125 renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers, tex,
1126 useFramebufferCache, std::move(fd), &readyFence);
1127
1128 if (status != NO_ERROR && mClientCompositionRequestCache) {
1129 // If rendering was not successful, remove the request from the cache.
1130 mClientCompositionRequestCache->remove(tex->getBuffer()->getId());
1131 }
1132
1133 auto& timeStats = getCompositionEngine().getTimeStats();
1134 if (readyFence.get() < 0) {
1135 timeStats.recordRenderEngineDuration(renderEngineStart, systemTime());
1136 } else {
1137 timeStats.recordRenderEngineDuration(renderEngineStart,
1138 std::make_shared<FenceTime>(
1139 new Fence(dup(readyFence.get()))));
1140 }
1141
1142 return readyFence;
1143 }
1144
generateClientCompositionRequests(bool supportsProtectedContent,Region & clearRegion,ui::Dataspace outputDataspace)1145 std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
1146 bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) {
1147 std::vector<LayerFE::LayerSettings> clientCompositionLayers;
1148 ALOGV("Rendering client layers");
1149
1150 const auto& outputState = getState();
1151 const Region viewportRegion(outputState.layerStackSpace.content);
1152 bool firstLayer = true;
1153 // Used when a layer clears part of the buffer.
1154 Region stubRegion;
1155
1156 bool disableBlurs = false;
1157 sp<GraphicBuffer> previousOverrideBuffer = nullptr;
1158
1159 for (auto* layer : getOutputLayersOrderedByZ()) {
1160 const auto& layerState = layer->getState();
1161 const auto* layerFEState = layer->getLayerFE().getCompositionState();
1162 auto& layerFE = layer->getLayerFE();
1163
1164 const Region clip(viewportRegion.intersect(layerState.visibleRegion));
1165 ALOGV("Layer: %s", layerFE.getDebugName());
1166 if (clip.isEmpty()) {
1167 ALOGV(" Skipping for empty clip");
1168 firstLayer = false;
1169 continue;
1170 }
1171
1172 disableBlurs |= layerFEState->sidebandStream != nullptr;
1173
1174 const bool clientComposition = layer->requiresClientComposition();
1175
1176 // We clear the client target for non-client composed layers if
1177 // requested by the HWC. We skip this if the layer is not an opaque
1178 // rectangle, as by definition the layer must blend with whatever is
1179 // underneath. We also skip the first layer as the buffer target is
1180 // guaranteed to start out cleared.
1181 const bool clearClientComposition =
1182 layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
1183
1184 ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition);
1185
1186 // If the layer casts a shadow but the content casting the shadow is occluded, skip
1187 // composing the non-shadow content and only draw the shadows.
1188 const bool realContentIsVisible = clientComposition &&
1189 !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
1190
1191 if (clientComposition || clearClientComposition) {
1192 std::vector<LayerFE::LayerSettings> results;
1193 if (layer->getState().overrideInfo.buffer != nullptr) {
1194 if (layer->getState().overrideInfo.buffer->getBuffer() != previousOverrideBuffer) {
1195 results = layer->getOverrideCompositionList();
1196 previousOverrideBuffer = layer->getState().overrideInfo.buffer->getBuffer();
1197 ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName());
1198 } else {
1199 ALOGV("Skipping redundant override buffer for [%s] in RE",
1200 layer->getLayerFE().getDebugName());
1201 }
1202 } else {
1203 LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs
1204 ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled
1205 : (layer->getState().overrideInfo.disableBackgroundBlur
1206 ? LayerFE::ClientCompositionTargetSettings::BlurSetting::
1207 BlurRegionsOnly
1208 : LayerFE::ClientCompositionTargetSettings::BlurSetting::
1209 Enabled);
1210 compositionengine::LayerFE::ClientCompositionTargetSettings
1211 targetSettings{.clip = clip,
1212 .needsFiltering = layer->needsFiltering() ||
1213 outputState.needsFiltering,
1214 .isSecure = outputState.isSecure,
1215 .supportsProtectedContent = supportsProtectedContent,
1216 .clearRegion = clientComposition ? clearRegion : stubRegion,
1217 .viewport = outputState.layerStackSpace.content,
1218 .dataspace = outputDataspace,
1219 .realContentIsVisible = realContentIsVisible,
1220 .clearContent = !clientComposition,
1221 .blurSetting = blurSetting};
1222 results = layerFE.prepareClientCompositionList(targetSettings);
1223 if (realContentIsVisible && !results.empty()) {
1224 layer->editState().clientCompositionTimestamp = systemTime();
1225 }
1226 }
1227
1228 clientCompositionLayers.insert(clientCompositionLayers.end(),
1229 std::make_move_iterator(results.begin()),
1230 std::make_move_iterator(results.end()));
1231 results.clear();
1232 }
1233
1234 firstLayer = false;
1235 }
1236
1237 return clientCompositionLayers;
1238 }
1239
appendRegionFlashRequests(const Region & flashRegion,std::vector<LayerFE::LayerSettings> & clientCompositionLayers)1240 void Output::appendRegionFlashRequests(
1241 const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
1242 if (flashRegion.isEmpty()) {
1243 return;
1244 }
1245
1246 LayerFE::LayerSettings layerSettings;
1247 layerSettings.source.buffer.buffer = nullptr;
1248 layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
1249 layerSettings.alpha = half(1.0);
1250
1251 for (const auto& rect : flashRegion) {
1252 layerSettings.geometry.boundaries = rect.toFloatRect();
1253 clientCompositionLayers.push_back(layerSettings);
1254 }
1255 }
1256
setExpensiveRenderingExpected(bool)1257 void Output::setExpensiveRenderingExpected(bool) {
1258 // The base class does nothing with this call.
1259 }
1260
postFramebuffer()1261 void Output::postFramebuffer() {
1262 ATRACE_CALL();
1263 ALOGV(__FUNCTION__);
1264
1265 if (!getState().isEnabled) {
1266 return;
1267 }
1268
1269 auto& outputState = editState();
1270 outputState.dirtyRegion.clear();
1271 mRenderSurface->flip();
1272
1273 auto frame = presentAndGetFrameFences();
1274
1275 mRenderSurface->onPresentDisplayCompleted();
1276
1277 for (auto* layer : getOutputLayersOrderedByZ()) {
1278 // The layer buffer from the previous frame (if any) is released
1279 // by HWC only when the release fence from this frame (if any) is
1280 // signaled. Always get the release fence from HWC first.
1281 sp<Fence> releaseFence = Fence::NO_FENCE;
1282
1283 if (auto hwcLayer = layer->getHwcLayer()) {
1284 if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
1285 releaseFence = f->second;
1286 }
1287 }
1288
1289 // If the layer was client composited in the previous frame, we
1290 // need to merge with the previous client target acquire fence.
1291 // Since we do not track that, always merge with the current
1292 // client target acquire fence when it is available, even though
1293 // this is suboptimal.
1294 // TODO(b/121291683): Track previous frame client target acquire fence.
1295 if (outputState.usesClientComposition) {
1296 releaseFence =
1297 Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
1298 }
1299
1300 layer->getLayerFE().onLayerDisplayed(releaseFence);
1301 }
1302
1303 // We've got a list of layers needing fences, that are disjoint with
1304 // OutputLayersOrderedByZ. The best we can do is to
1305 // supply them with the present fence.
1306 for (auto& weakLayer : mReleasedLayers) {
1307 if (auto layer = weakLayer.promote(); layer != nullptr) {
1308 layer->onLayerDisplayed(frame.presentFence);
1309 }
1310 }
1311
1312 // Clear out the released layers now that we're done with them.
1313 mReleasedLayers.clear();
1314 }
1315
renderCachedSets(const CompositionRefreshArgs & refreshArgs)1316 void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) {
1317 if (mPlanner) {
1318 mPlanner->renderCachedSets(getState(), refreshArgs.nextInvalidateTime);
1319 }
1320 }
1321
dirtyEntireOutput()1322 void Output::dirtyEntireOutput() {
1323 auto& outputState = editState();
1324 outputState.dirtyRegion.set(outputState.displaySpace.bounds);
1325 }
1326
chooseCompositionStrategy()1327 void Output::chooseCompositionStrategy() {
1328 // The base output implementation can only do client composition
1329 auto& outputState = editState();
1330 outputState.usesClientComposition = true;
1331 outputState.usesDeviceComposition = false;
1332 outputState.reusedClientComposition = false;
1333 }
1334
getSkipColorTransform() const1335 bool Output::getSkipColorTransform() const {
1336 return true;
1337 }
1338
presentAndGetFrameFences()1339 compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
1340 compositionengine::Output::FrameFences result;
1341 if (getState().usesClientComposition) {
1342 result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
1343 }
1344 return result;
1345 }
1346
1347 } // namespace impl
1348 } // namespace android::compositionengine
1349