1# 2# Copyright (C) 2019 The Android Open Source Project 3# 4# Licensed under the Apache License, Version 2.0 (the "License"); 5# you may not use this file except in compliance with the License. 6# You may obtain a copy of the License at 7# 8# http://www.apache.org/licenses/LICENSE-2.0 9# 10# Unless required by applicable law or agreed to in writing, software 11# distributed under the License is distributed on an "AS IS" BASIS, 12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13# See the License for the specific language governing permissions and 14# limitations under the License. 15# 16def test(name, input0, output0, input0_data, output0_data): 17 model = Model().Operation("RANK", input0).To(output0) 18 quant8 = DataTypeConverter().Identify({ 19 input0: ("TENSOR_QUANT8_ASYMM", 0.1, 128), 20 }) 21 quant8_signed = DataTypeConverter().Identify({ 22 input0: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0), 23 }) 24 example = Example({ 25 input0: input0_data, 26 output0: output0_data, 27 }, model=model, name=name).AddVariations("int32", "float16", quant8, quant8_signed) 28 29test( 30 name="1d", 31 input0=Input("input0", "TENSOR_FLOAT32", "{3}"), 32 output0=Output("output0", "INT32", "{}"), 33 input0_data=[5, 7, 10], 34 output0_data=[1], 35) 36 37test( 38 name="1d", 39 input0=Input("input0", "TENSOR_FLOAT32", "{2, 3}"), 40 output0=Output("output0", "INT32", "{}"), 41 input0_data=[1, 2, 3, 4, 5, 6], 42 output0_data=[2], 43) 44 45# b/150728111 regression test. 46# Rank is a first operation that produces a scalar output. 47# This test verifies that RANK works with a scalar output 48# that's internal graph variable (not input or output of a graph). 49def test_internal_output(name, rank_input, fill_dims, fill_output, rank_input_data, 50 fill_dims_data, fill_output_data): 51 internal_result = Internal("rank_internal_result", "INT32", "{}") 52 model = Model() 53 model = model.Operation("RANK", rank_input).To(internal_result) 54 model = model.Operation("FILL", fill_dims, internal_result).To(fill_output) 55 56 example = Example({ 57 rank_input: rank_input_data, 58 fill_dims: fill_dims_data, 59 fill_output: fill_output_data, 60 }, model=model, name=name) 61 62test_internal_output( 63 name="internal_output", 64 rank_input=Input("input0", "TENSOR_FLOAT32", "{2, 3}"), 65 fill_dims=Input("input0", "TENSOR_INT32", "{3}"), 66 fill_output=Output("output", "TENSOR_INT32", "{2, 3, 4}"), 67 rank_input_data=[1, 2, 3, 4, 5, 6], 68 fill_dims_data=[2, 3, 4], 69 fill_output_data=[2] * (2 * 3 * 4), 70) 71