• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2011 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "rtc_base/message_digest.h"
12 
13 #include <string.h>
14 
15 #include <cstdint>
16 #include <memory>
17 
18 #include "rtc_base/openssl_digest.h"
19 #include "rtc_base/string_encode.h"
20 
21 namespace rtc {
22 
23 // From RFC 4572.
24 const char DIGEST_MD5[] = "md5";
25 const char DIGEST_SHA_1[] = "sha-1";
26 const char DIGEST_SHA_224[] = "sha-224";
27 const char DIGEST_SHA_256[] = "sha-256";
28 const char DIGEST_SHA_384[] = "sha-384";
29 const char DIGEST_SHA_512[] = "sha-512";
30 
31 static const size_t kBlockSize = 64;  // valid for SHA-256 and down
32 
Create(const std::string & alg)33 MessageDigest* MessageDigestFactory::Create(const std::string& alg) {
34   MessageDigest* digest = new OpenSSLDigest(alg);
35   if (digest->Size() == 0) {  // invalid algorithm
36     delete digest;
37     digest = nullptr;
38   }
39   return digest;
40 }
41 
IsFips180DigestAlgorithm(const std::string & alg)42 bool IsFips180DigestAlgorithm(const std::string& alg) {
43   // These are the FIPS 180 algorithms.  According to RFC 4572 Section 5,
44   // "Self-signed certificates (for which legacy certificates are not a
45   // consideration) MUST use one of the FIPS 180 algorithms (SHA-1,
46   // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm,
47   // and thus also MUST use it to calculate certificate fingerprints."
48   return alg == DIGEST_SHA_1 || alg == DIGEST_SHA_224 ||
49          alg == DIGEST_SHA_256 || alg == DIGEST_SHA_384 ||
50          alg == DIGEST_SHA_512;
51 }
52 
ComputeDigest(MessageDigest * digest,const void * input,size_t in_len,void * output,size_t out_len)53 size_t ComputeDigest(MessageDigest* digest,
54                      const void* input,
55                      size_t in_len,
56                      void* output,
57                      size_t out_len) {
58   digest->Update(input, in_len);
59   return digest->Finish(output, out_len);
60 }
61 
ComputeDigest(const std::string & alg,const void * input,size_t in_len,void * output,size_t out_len)62 size_t ComputeDigest(const std::string& alg,
63                      const void* input,
64                      size_t in_len,
65                      void* output,
66                      size_t out_len) {
67   std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
68   return (digest) ? ComputeDigest(digest.get(), input, in_len, output, out_len)
69                   : 0;
70 }
71 
ComputeDigest(MessageDigest * digest,const std::string & input)72 std::string ComputeDigest(MessageDigest* digest, const std::string& input) {
73   std::unique_ptr<char[]> output(new char[digest->Size()]);
74   ComputeDigest(digest, input.data(), input.size(), output.get(),
75                 digest->Size());
76   return hex_encode(output.get(), digest->Size());
77 }
78 
ComputeDigest(const std::string & alg,const std::string & input,std::string * output)79 bool ComputeDigest(const std::string& alg,
80                    const std::string& input,
81                    std::string* output) {
82   std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
83   if (!digest) {
84     return false;
85   }
86   *output = ComputeDigest(digest.get(), input);
87   return true;
88 }
89 
ComputeDigest(const std::string & alg,const std::string & input)90 std::string ComputeDigest(const std::string& alg, const std::string& input) {
91   std::string output;
92   ComputeDigest(alg, input, &output);
93   return output;
94 }
95 
96 // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text))
ComputeHmac(MessageDigest * digest,const void * key,size_t key_len,const void * input,size_t in_len,void * output,size_t out_len)97 size_t ComputeHmac(MessageDigest* digest,
98                    const void* key,
99                    size_t key_len,
100                    const void* input,
101                    size_t in_len,
102                    void* output,
103                    size_t out_len) {
104   // We only handle algorithms with a 64-byte blocksize.
105   // TODO: Add BlockSize() method to MessageDigest.
106   size_t block_len = kBlockSize;
107   if (digest->Size() > 32) {
108     return 0;
109   }
110   // Copy the key to a block-sized buffer to simplify padding.
111   // If the key is longer than a block, hash it and use the result instead.
112   std::unique_ptr<uint8_t[]> new_key(new uint8_t[block_len]);
113   if (key_len > block_len) {
114     ComputeDigest(digest, key, key_len, new_key.get(), block_len);
115     memset(new_key.get() + digest->Size(), 0, block_len - digest->Size());
116   } else {
117     memcpy(new_key.get(), key, key_len);
118     memset(new_key.get() + key_len, 0, block_len - key_len);
119   }
120   // Set up the padding from the key, salting appropriately for each padding.
121   std::unique_ptr<uint8_t[]> o_pad(new uint8_t[block_len]);
122   std::unique_ptr<uint8_t[]> i_pad(new uint8_t[block_len]);
123   for (size_t i = 0; i < block_len; ++i) {
124     o_pad[i] = 0x5c ^ new_key[i];
125     i_pad[i] = 0x36 ^ new_key[i];
126   }
127   // Inner hash; hash the inner padding, and then the input buffer.
128   std::unique_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]);
129   digest->Update(i_pad.get(), block_len);
130   digest->Update(input, in_len);
131   digest->Finish(inner.get(), digest->Size());
132   // Outer hash; hash the outer padding, and then the result of the inner hash.
133   digest->Update(o_pad.get(), block_len);
134   digest->Update(inner.get(), digest->Size());
135   return digest->Finish(output, out_len);
136 }
137 
ComputeHmac(const std::string & alg,const void * key,size_t key_len,const void * input,size_t in_len,void * output,size_t out_len)138 size_t ComputeHmac(const std::string& alg,
139                    const void* key,
140                    size_t key_len,
141                    const void* input,
142                    size_t in_len,
143                    void* output,
144                    size_t out_len) {
145   std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
146   if (!digest) {
147     return 0;
148   }
149   return ComputeHmac(digest.get(), key, key_len, input, in_len, output,
150                      out_len);
151 }
152 
ComputeHmac(MessageDigest * digest,const std::string & key,const std::string & input)153 std::string ComputeHmac(MessageDigest* digest,
154                         const std::string& key,
155                         const std::string& input) {
156   std::unique_ptr<char[]> output(new char[digest->Size()]);
157   ComputeHmac(digest, key.data(), key.size(), input.data(), input.size(),
158               output.get(), digest->Size());
159   return hex_encode(output.get(), digest->Size());
160 }
161 
ComputeHmac(const std::string & alg,const std::string & key,const std::string & input,std::string * output)162 bool ComputeHmac(const std::string& alg,
163                  const std::string& key,
164                  const std::string& input,
165                  std::string* output) {
166   std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
167   if (!digest) {
168     return false;
169   }
170   *output = ComputeHmac(digest.get(), key, input);
171   return true;
172 }
173 
ComputeHmac(const std::string & alg,const std::string & key,const std::string & input)174 std::string ComputeHmac(const std::string& alg,
175                         const std::string& key,
176                         const std::string& input) {
177   std::string output;
178   ComputeHmac(alg, key, input, &output);
179   return output;
180 }
181 
182 }  // namespace rtc
183