1 /*
2 * Copyright 2011 The WebRTC Project Authors. All rights reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "rtc_base/message_digest.h"
12
13 #include <string.h>
14
15 #include <cstdint>
16 #include <memory>
17
18 #include "rtc_base/openssl_digest.h"
19 #include "rtc_base/string_encode.h"
20
21 namespace rtc {
22
23 // From RFC 4572.
24 const char DIGEST_MD5[] = "md5";
25 const char DIGEST_SHA_1[] = "sha-1";
26 const char DIGEST_SHA_224[] = "sha-224";
27 const char DIGEST_SHA_256[] = "sha-256";
28 const char DIGEST_SHA_384[] = "sha-384";
29 const char DIGEST_SHA_512[] = "sha-512";
30
31 static const size_t kBlockSize = 64; // valid for SHA-256 and down
32
Create(const std::string & alg)33 MessageDigest* MessageDigestFactory::Create(const std::string& alg) {
34 MessageDigest* digest = new OpenSSLDigest(alg);
35 if (digest->Size() == 0) { // invalid algorithm
36 delete digest;
37 digest = nullptr;
38 }
39 return digest;
40 }
41
IsFips180DigestAlgorithm(const std::string & alg)42 bool IsFips180DigestAlgorithm(const std::string& alg) {
43 // These are the FIPS 180 algorithms. According to RFC 4572 Section 5,
44 // "Self-signed certificates (for which legacy certificates are not a
45 // consideration) MUST use one of the FIPS 180 algorithms (SHA-1,
46 // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm,
47 // and thus also MUST use it to calculate certificate fingerprints."
48 return alg == DIGEST_SHA_1 || alg == DIGEST_SHA_224 ||
49 alg == DIGEST_SHA_256 || alg == DIGEST_SHA_384 ||
50 alg == DIGEST_SHA_512;
51 }
52
ComputeDigest(MessageDigest * digest,const void * input,size_t in_len,void * output,size_t out_len)53 size_t ComputeDigest(MessageDigest* digest,
54 const void* input,
55 size_t in_len,
56 void* output,
57 size_t out_len) {
58 digest->Update(input, in_len);
59 return digest->Finish(output, out_len);
60 }
61
ComputeDigest(const std::string & alg,const void * input,size_t in_len,void * output,size_t out_len)62 size_t ComputeDigest(const std::string& alg,
63 const void* input,
64 size_t in_len,
65 void* output,
66 size_t out_len) {
67 std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
68 return (digest) ? ComputeDigest(digest.get(), input, in_len, output, out_len)
69 : 0;
70 }
71
ComputeDigest(MessageDigest * digest,const std::string & input)72 std::string ComputeDigest(MessageDigest* digest, const std::string& input) {
73 std::unique_ptr<char[]> output(new char[digest->Size()]);
74 ComputeDigest(digest, input.data(), input.size(), output.get(),
75 digest->Size());
76 return hex_encode(output.get(), digest->Size());
77 }
78
ComputeDigest(const std::string & alg,const std::string & input,std::string * output)79 bool ComputeDigest(const std::string& alg,
80 const std::string& input,
81 std::string* output) {
82 std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
83 if (!digest) {
84 return false;
85 }
86 *output = ComputeDigest(digest.get(), input);
87 return true;
88 }
89
ComputeDigest(const std::string & alg,const std::string & input)90 std::string ComputeDigest(const std::string& alg, const std::string& input) {
91 std::string output;
92 ComputeDigest(alg, input, &output);
93 return output;
94 }
95
96 // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text))
ComputeHmac(MessageDigest * digest,const void * key,size_t key_len,const void * input,size_t in_len,void * output,size_t out_len)97 size_t ComputeHmac(MessageDigest* digest,
98 const void* key,
99 size_t key_len,
100 const void* input,
101 size_t in_len,
102 void* output,
103 size_t out_len) {
104 // We only handle algorithms with a 64-byte blocksize.
105 // TODO: Add BlockSize() method to MessageDigest.
106 size_t block_len = kBlockSize;
107 if (digest->Size() > 32) {
108 return 0;
109 }
110 // Copy the key to a block-sized buffer to simplify padding.
111 // If the key is longer than a block, hash it and use the result instead.
112 std::unique_ptr<uint8_t[]> new_key(new uint8_t[block_len]);
113 if (key_len > block_len) {
114 ComputeDigest(digest, key, key_len, new_key.get(), block_len);
115 memset(new_key.get() + digest->Size(), 0, block_len - digest->Size());
116 } else {
117 memcpy(new_key.get(), key, key_len);
118 memset(new_key.get() + key_len, 0, block_len - key_len);
119 }
120 // Set up the padding from the key, salting appropriately for each padding.
121 std::unique_ptr<uint8_t[]> o_pad(new uint8_t[block_len]);
122 std::unique_ptr<uint8_t[]> i_pad(new uint8_t[block_len]);
123 for (size_t i = 0; i < block_len; ++i) {
124 o_pad[i] = 0x5c ^ new_key[i];
125 i_pad[i] = 0x36 ^ new_key[i];
126 }
127 // Inner hash; hash the inner padding, and then the input buffer.
128 std::unique_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]);
129 digest->Update(i_pad.get(), block_len);
130 digest->Update(input, in_len);
131 digest->Finish(inner.get(), digest->Size());
132 // Outer hash; hash the outer padding, and then the result of the inner hash.
133 digest->Update(o_pad.get(), block_len);
134 digest->Update(inner.get(), digest->Size());
135 return digest->Finish(output, out_len);
136 }
137
ComputeHmac(const std::string & alg,const void * key,size_t key_len,const void * input,size_t in_len,void * output,size_t out_len)138 size_t ComputeHmac(const std::string& alg,
139 const void* key,
140 size_t key_len,
141 const void* input,
142 size_t in_len,
143 void* output,
144 size_t out_len) {
145 std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
146 if (!digest) {
147 return 0;
148 }
149 return ComputeHmac(digest.get(), key, key_len, input, in_len, output,
150 out_len);
151 }
152
ComputeHmac(MessageDigest * digest,const std::string & key,const std::string & input)153 std::string ComputeHmac(MessageDigest* digest,
154 const std::string& key,
155 const std::string& input) {
156 std::unique_ptr<char[]> output(new char[digest->Size()]);
157 ComputeHmac(digest, key.data(), key.size(), input.data(), input.size(),
158 output.get(), digest->Size());
159 return hex_encode(output.get(), digest->Size());
160 }
161
ComputeHmac(const std::string & alg,const std::string & key,const std::string & input,std::string * output)162 bool ComputeHmac(const std::string& alg,
163 const std::string& key,
164 const std::string& input,
165 std::string* output) {
166 std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg));
167 if (!digest) {
168 return false;
169 }
170 *output = ComputeHmac(digest.get(), key, input);
171 return true;
172 }
173
ComputeHmac(const std::string & alg,const std::string & key,const std::string & input)174 std::string ComputeHmac(const std::string& alg,
175 const std::string& key,
176 const std::string& input) {
177 std::string output;
178 ComputeHmac(alg, key, input, &output);
179 return output;
180 }
181
182 } // namespace rtc
183