/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | box_with_nms_limit_quant8_signed.mod.py | 22 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{18}") # scores out 23 o2 = Output("roiOut", "TENSOR_FLOAT32", "{18, 4}") # roi out 24 o3 = Output("classesOut", "TENSOR_INT32", "{18}") # classes out 25 o4 = Output("batchSplitOut", "TENSOR_INT32", "{18}") # batch split out 119 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{10}") # scores out 120 o2 = Output("roiOut", "TENSOR_FLOAT32", "{10, 4}") # roi out 121 o3 = Output("classesOut", "TENSOR_INT32", "{10}") # classes out 122 o4 = Output("batchSplitOut", "TENSOR_INT32", "{10}") # batch split out 208 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{12}") # scores out 209 o2 = Output("roiOut", "TENSOR_FLOAT32", "{12, 4}") # roi out [all …]
|
D | conv2d_quant8_signed.mod.py | 23 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") 45 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") 74 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") 96 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") 126 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") 153 o1 = Output("op4", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 3, 1, 3}, 1.f, 0") 168 o2 = Output("op4", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 3, 1, 3}, 1.f, 0") 182 o1 = Output("scoresOut", "TENSOR_QUANT8_ASYMM_SIGNED", "{0}, 0.1f, 0") # scores out 183 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 197 o3 = Output("out", "TENSOR_QUANT8_ASYMM_SIGNED", "{0, 2, 2, 3}, 1.f, 0") # out [all …]
|
D | resize_quant8_signed.mod.py | 21 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") 45 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 2}") 69 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") 96 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 97 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 108 o3 = Output("out", "TENSOR_FLOAT32", "{0, 3, 3, 1}") # out 134 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 135 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 146 o3 = Output("out", "TENSOR_FLOAT32", "{0, 3, 3, 1}") # out 171 o1 = Output("out", "TENSOR_FLOAT32", "{1, 1, 1, 1}") # output 0 [all …]
|
D | split_quant8_signed.mod.py | 20 output0 = Output("output0", "TENSOR_QUANT8_ASYMM_SIGNED", "{2}, 1.0, -128") 21 output1 = Output("output1", "TENSOR_QUANT8_ASYMM_SIGNED", "{2}, 1.0, -128") 22 output2 = Output("output2", "TENSOR_QUANT8_ASYMM_SIGNED", "{2}, 1.0, -128") 43 output0 = Output("output0", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 3}, 2.0, -125") 44 output1 = Output("output1", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 3}, 2.0, -125") 64 output0 = Output("output0", "TENSOR_QUANT8_ASYMM_SIGNED", "{2, 1}, 2.0, -125") 65 output1 = Output("output1", "TENSOR_QUANT8_ASYMM_SIGNED", "{2, 1}, 2.0, -125") 66 output2 = Output("output2", "TENSOR_QUANT8_ASYMM_SIGNED", "{2, 1}, 2.0, -125") 87 output0 = Output("output0", "TENSOR_QUANT8_ASYMM_SIGNED", 89 output1 = Output("output1", "TENSOR_QUANT8_ASYMM_SIGNED",
|
D | transpose_quant8_signed.mod.py | 25 o1 = Output("op4", "TENSOR_FLOAT32", "{25, 32, 32, 16}") # output 59 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 5, 5, 2}") # output 108 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 4, 1}") # output 141 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 4, 4, 1}") # output 167 o4 = Output("op4", "TENSOR_FLOAT32", "{1, 6, 6, 1}") # output 194 o5 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") # output 219 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 220 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 234 o3 = Output("out", "TENSOR_FLOAT32", "{0, 5, 5, 2}") # out 262 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out [all …]
|
D | resize_nearest_neighbor_v1_3.mod.py | 45 output0=Output("output0", "TENSOR_FLOAT32", "{1, 2, 2, 1}"), 58 output0=Output("output0", "TENSOR_FLOAT32", "{1, 1, 1, 1}"), 71 output0=Output("output0", "TENSOR_FLOAT32", "{1, 3, 3, 1}"), 84 output0=Output("output0", "TENSOR_FLOAT32", "{1, 2, 5, 1}"), 97 output0=Output("output0", "TENSOR_FLOAT32", "{1, 3, 3, 1}"), 110 output0=Output("output0", "TENSOR_FLOAT32", "{1, 5, 2, 1}"), 123 output0=Output("output0", "TENSOR_FLOAT32", "{1, 4, 4, 1}"), 136 output0=Output("output0", "TENSOR_FLOAT32", "{2, 3, 3, 2}"), 152 output0=Output("output0", "TENSOR_FLOAT32", "{1, 1, 1, 1}"), 165 output0=Output("output0", "TENSOR_FLOAT32", "{1, 3, 3, 1}"), [all …]
|
D | bidirectional_sequence_rnn_state_output.mod.py | 244 fw_output=Output( 247 bw_output=Output( 250 fw_output_hidden_state=Output( 253 bw_output_hidden_state=Output( 297 fw_output=Output( 300 bw_output=Output( 303 fw_output_hidden_state=Output( 306 bw_output_hidden_state=Output( 359 fw_output=Output( 364 fw_output_hidden_state=Output( [all …]
|
D | depthwise_conv2d_quant8_signed.mod.py | 23 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 4}") 51 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 4}") 80 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 4}") 108 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 4}") 137 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") 169 o1 = Output("op4", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 1, 1, 2}, 1.f, -128") 186 o2 = Output("op4", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 2, 2, 4}, 1.f, 0") 206 o3 = Output("op4", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 2, 2, 4}, 1.f, 0") 226 output = Output("op4", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 2, 1, 4}, 1.f, -1") 258 output = Output("op4", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 1, 1, 2}, 1.f, -128") [all …]
|
D | gather_quant8_signed.mod.py | 20 output0 = Output("output0", "TENSOR_FLOAT32", "{1, 3, 2, 2}") 63 output0=Output("output0", "TENSOR_FLOAT32", "{2, 2}"), 74 output0=Output("output0", "TENSOR_FLOAT32", "{1, 2}"), 84 output0=Output("output0", "TENSOR_FLOAT32", "{1}"), 93 output0=Output("output0", "TENSOR_FLOAT32", "{2}"), 102 output0=Output("output0", "TENSOR_FLOAT32", "{2, 2, 2}"), 115 output0=Output("output0", "TENSOR_FLOAT32", "{2, 1}"), 124 output0=Output("output0", "TENSOR_FLOAT32", "{1, 2, 3}"), 135 output0=Output("output0", "TENSOR_FLOAT32", "{1, 2, 2}"),
|
D | avg_pool_quant8_signed.mod.py | 22 o = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 2, 2, 1}, 0.5f, -128") 57 output = Output("output", "TENSOR_QUANT8_ASYMM_SIGNED", 94 output = Output("output", "TENSOR_QUANT8_ASYMM_SIGNED", 116 o = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 3, 3, 1}, 0.5f, -128") 136 i3 = Output("op3", "TENSOR_QUANT8_ASYMM_SIGNED", "{1, 1, 2, 1}, 0.0625f, -128") # output 0 152 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") 181 o2 = Output("op4", ("TENSOR_FLOAT32", [bat, output_row, output_col, chn])) 210 o3 = Output("op4", ("TENSOR_FLOAT32", [bat, output_row, output_col, chn])) 239 o4 = Output("op4", ("TENSOR_FLOAT32", [bat, output_row, output_col, chn])) 258 o5 = Output("op4", "TENSOR_FLOAT32", "{1, 1, 2, 1}") [all …]
|
D | cast_identity.mod.py | 29 as_output=Output("output0", "TENSOR_FLOAT16", "{2, 3}"), 36 as_output=Output("output0", "TENSOR_FLOAT32", "{2, 3}"), 43 as_output=Output("output0", "TENSOR_INT32", "{2, 3}"), 50 as_output=Output("output0", "TENSOR_BOOL8", "{2, 3}"), 55 as_output=Output("output0", "TENSOR_QUANT8_ASYMM", "{2, 3}, 4.0, 100"), 62 as_output=Output("output0", "TENSOR_QUANT8_SYMM", "{2, 3}, 4.0, 0"), 67 as_output=Output("output0", "TENSOR_QUANT16_ASYMM", "{2, 3}, 4.0, 100"), 72 as_output=Output("output0", "TENSOR_QUANT16_SYMM", "{2, 3}, 4.0, 0"),
|
D | transpose_conv2d_quant8_signed.mod.py | 25 o1 = Output("op4", "TENSOR_FLOAT32", "{25, 32, 32, 16}") # output 59 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 5, 5, 2}") # output 108 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 4, 1}") # output 140 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 4, 4, 1}") # output 166 o4 = Output("op4", "TENSOR_FLOAT32", "{1, 6, 6, 1}") # output 193 o5 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") # output 218 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 219 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 233 o3 = Output("out", "TENSOR_FLOAT32", "{0, 5, 5, 2}") # out 261 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out [all …]
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | detection_postprocess.mod.py | 22 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{1, 3}") # scores out 23 o2 = Output("roiOut", "TENSOR_FLOAT32", "{1, 3, 4}") # roi out 24 o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out 25 o4 = Output("detectionOut", "TENSOR_INT32", "{1}") # num detections out 73 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{1, 3}") # scores out 74 o2 = Output("roiOut", "TENSOR_FLOAT32", "{1, 3, 4}") # roi out 75 o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out 76 o4 = Output("detectionOut", "TENSOR_INT32", "{1}") # num detections out 124 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{1, 3}") # scores out 125 o2 = Output("roiOut", "TENSOR_FLOAT32", "{1, 3, 4}") # roi out [all …]
|
D | topk_v2.mod.py | 28 out_values=Output("out_values", "TENSOR_FLOAT32", "{2, 2}"), 30 out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"), 36 out_values=Output("out_values", "TENSOR_FLOAT32", "{2, 2}"), 38 out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"), 44 out_values=Output("out_values", "TENSOR_FLOAT32", "{2, 2}"), 46 out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"), 52 out_values=Output("out_values", "TENSOR_FLOAT32", "{2}"), 54 out_indices=Output("out_indices", "TENSOR_INT32", "{2}"), 60 out_values=Output("out_values", "TENSOR_QUANT8_ASYMM", "{2, 2}, 2.0, 128"), 62 out_indices=Output("out_indices", "TENSOR_INT32", "{2, 2}"), [all …]
|
D | slice.mod.py | 31 output=Output("output", "TENSOR_FLOAT32", "{2}"), 40 output=Output("output", "TENSOR_FLOAT32", "{1, 2}"), 49 output=Output("output", "TENSOR_FLOAT32", "{2, 3, 2}"), 58 output=Output("output", "TENSOR_FLOAT32", "{3, 1, 1, 1}"), 67 output=Output("output", "TENSOR_INT32", "{1, 1, 3, 1}"), 76 output=Output("output", "TENSOR_INT32", "{2, 1, 3, 1}"), 85 output=Output("output", "TENSOR_QUANT8_ASYMM", "{2, 1, 3, 1}, 2.0, 128"), 94 output=Output("output", "TENSOR_INT32", "{2, 1, 3, 1}"), 115 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 116 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out [all …]
|
D | dequantize_v1_2.mod.py | 31 output0=Output("output0", "TENSOR_FLOAT32", "{10}"), 39 output0=Output("output0", "TENSOR_FLOAT32", "{2, 5}"), 47 output0=Output("output0", "TENSOR_FLOAT32", "{2, 2, 2}"), 55 output0=Output("output0", "TENSOR_FLOAT32", "{2, 1, 2, 2}"), 65 output0=Output("output0", "TENSOR_FLOAT32", "{2, 3, 4}"), 82 output0=Output("output0", "TENSOR_FLOAT32", "{2, 3, 4}"), 104 i2 = Output("op2", "TENSOR_FLOAT16", "{1, 2, 2, 1}") 123 o1 = Output("scoresOut", "TENSOR_QUANT8_ASYMM", "{0}, 0.1f, 128") # scores out 124 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 136 o3 = Output("out", "TENSOR_FLOAT32", "{0, 2, 2, 1}") # out
|
D | conv2d_v1_2.mod.py | 23 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") 51 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 4, 1}") 79 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 3}") 107 o4 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 3, 3}") 147 o5 = Output("op4", "TENSOR_FLOAT32", "{1, 8, 8, 1}") 148 o6 = Output("op4", "TENSOR_FLOAT32", "{1, 6, 7, 1}") 173 o7 = Output("op4", "TENSOR_FLOAT32", "{1, 8, 8, 3}") 174 o8 = Output("op4", "TENSOR_FLOAT32", "{1, 6, 7, 3}") 201 o9 = Output("op4", ("TENSOR_QUANT8_ASYMM", [2, 1, 2, 3], 1.0, 127)) 219 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out [all …]
|
D | resize_nearest_neighbor.mod.py | 21 o1 = Output("out", "TENSOR_FLOAT32", "{1, 1, 1, 1}") # output 0 42 o1 = Output("out", "TENSOR_FLOAT32", "{1, 3, 3, 1}") # output 0 63 o1 = Output("out", "TENSOR_FLOAT32", "{1, 2, 2, 1}") # output 0 84 o1 = Output("out", "TENSOR_FLOAT32", "{1, 2, 5, 1}") # output 0 105 o1 = Output("out", "TENSOR_FLOAT32", "{1, 3, 3, 1}") # output 0 126 o1 = Output("out", "TENSOR_FLOAT32", "{1, 5, 2, 1}") # output 0 147 o1 = Output("out", "TENSOR_FLOAT32", "{1, 4, 4, 1}") # output 0 168 o1 = Output("out", "TENSOR_FLOAT32", "{2, 3, 3, 2}") # output 0 194 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 195 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out [all …]
|
D | box_with_nms_limit_hard.mod.py | 22 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{12}") # scores out 23 o2 = Output("roiOut", "TENSOR_FLOAT32", "{12, 4}") # roi out 24 o3 = Output("classesOut", "TENSOR_INT32", "{12}") # classes out 25 o4 = Output("batchSplitOut", "TENSOR_INT32", "{12}") # batch split out 109 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{10}") # scores out 110 o2 = Output("roiOut", "TENSOR_FLOAT32", "{10, 4}") # roi out 111 o3 = Output("classesOut", "TENSOR_INT32", "{10}") # classes out 112 o4 = Output("batchSplitOut", "TENSOR_INT32", "{10}") # batch split out
|
D | box_with_nms_limit_gaussian.mod.py | 22 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{18}") # scores out 23 o2 = Output("roiOut", "TENSOR_FLOAT32", "{18, 4}") # roi out 24 o3 = Output("classesOut", "TENSOR_INT32", "{18}") # classes out 25 o4 = Output("batchSplitOut", "TENSOR_INT32", "{18}") # batch split out 118 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{10}") # scores out 119 o2 = Output("roiOut", "TENSOR_FLOAT32", "{10, 4}") # roi out 120 o3 = Output("classesOut", "TENSOR_INT32", "{10}") # classes out 121 o4 = Output("batchSplitOut", "TENSOR_INT32", "{10}") # batch split out
|
D | box_with_nms_limit_linear.mod.py | 22 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{16}") # scores out 23 o2 = Output("roiOut", "TENSOR_FLOAT32", "{16, 4}") # roi out 24 o3 = Output("classesOut", "TENSOR_INT32", "{16}") # classes out 25 o4 = Output("batchSplitOut", "TENSOR_INT32", "{16}") # batch split out 116 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{15}") # scores out 117 o2 = Output("roiOut", "TENSOR_FLOAT32", "{15, 4}") # roi out 118 o3 = Output("classesOut", "TENSOR_INT32", "{15}") # classes out 119 o4 = Output("batchSplitOut", "TENSOR_INT32", "{15}") # batch split out
|
D | l2_pool_v1_2.mod.py | 21 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") 33 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 1, 2, 1}") 45 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 3}") 60 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 61 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 72 o3 = Output("out", "TENSOR_FLOAT32", "{0, 1, 1, 1}") # out 88 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 89 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 100 o3 = Output("out", "TENSOR_FLOAT32", "{0, 2, 2, 1}") # out
|
D | gather.mod.py | 44 output0=Output("output0", "TENSOR_FLOAT32", "{2, 2}"), 55 output0=Output("output0", "TENSOR_FLOAT32", "{1, 2}"), 65 output0=Output("output0", "TENSOR_FLOAT32", "{1}"), 74 output0=Output("output0", "TENSOR_FLOAT32", "{2}"), 83 output0=Output("output0", "TENSOR_FLOAT32", "{2, 2, 2}"), 96 output0=Output("output0", "TENSOR_FLOAT32", "{2, 1}"), 105 output0=Output("output0", "TENSOR_FLOAT32", "{1, 2, 3}"), 116 output0=Output("output0", "TENSOR_FLOAT32", "{1, 2, 2}"),
|
D | transpose_conv2d.mod.py | 25 o1 = Output("op4", "TENSOR_FLOAT32", "{1, 5, 5, 2}") # output 73 o2 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 4, 1}") # output 105 o3 = Output("op4", "TENSOR_FLOAT32", "{1, 4, 4, 1}") # output 131 o4 = Output("op4", "TENSOR_FLOAT32", "{1, 6, 6, 1}") # output 158 o5 = Output("op4", "TENSOR_FLOAT32", "{1, 3, 3, 1}") # output 183 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 184 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 198 o3 = Output("out", "TENSOR_FLOAT32", "{0, 5, 5, 2}") # out 226 o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 227 o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out [all …]
|
/packages/apps/Messaging/src/com/android/messaging/util/ |
D | FallbackStrategies.java | 49 public class FallbackStrategies<Input, Output> { 50 public interface Strategy<Input, Output> { 51 Output execute(Input params) throws Exception; in execute() 54 private final List<Strategy<Input, Output>> mChainedStrategies; 56 private FallbackStrategies(final Strategy<Input, Output> primaryStrategy) { in FallbackStrategies() 57 mChainedStrategies = new ArrayList<Strategy<Input, Output>>(); in FallbackStrategies() 61 public static <Input, Output> FallbackStrategies<Input, Output> startWith( in startWith() 62 final Strategy<Input, Output> primaryStrategy) { in startWith() 63 return new FallbackStrategies<Input, Output>(primaryStrategy); in startWith() 66 public FallbackStrategies<Input, Output> thenTry(final Strategy<Input, Output> strategy) { in thenTry() [all …]
|