• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#
2# Copyright (C) 2019 The Android Open Source Project
3#
4# Licensed under the Apache License, Version 2.0 (the "License");
5# you may not use this file except in compliance with the License.
6# You may obtain a copy of the License at
7#
8#      http://www.apache.org/licenses/LICENSE-2.0
9#
10# Unless required by applicable law or agreed to in writing, software
11# distributed under the License is distributed on an "AS IS" BASIS,
12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13# See the License for the specific language governing permissions and
14# limitations under the License.
15#
16
17# TEST 1: DETECTION_POSTPROCESSING
18i1 = Input("scores", "TENSOR_FLOAT32", "{1, 6, 3}") # scores
19i2 = Input("roi", "TENSOR_FLOAT32", "{1, 6, 4}") # roi
20i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors
21
22o1 = Output("scoresOut", "TENSOR_FLOAT32", "{1, 3}") # scores out
23o2 = Output("roiOut", "TENSOR_FLOAT32", "{1, 3, 4}") # roi out
24o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out
25o4 = Output("detectionOut", "TENSOR_INT32", "{1}") # num detections out
26Model("regular").Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, True, 3, 1, 1, 0.0, 0.5, False).To(o1, o2, o3, o4)
27
28input0 = {
29    i1: [   # class scores - two classes with background
30        0., .9, .8,
31        0., .75, .72,
32        0., .6, .5,
33        0., .93, .95,
34        0., .5, .4,
35        0., .3, .2
36    ],
37    i2: [   # six boxes in center-size encoding
38        0.0, 0.0,  0.0, 0.0,  # box #1
39        0.0, 1.0,  0.0, 0.0,  # box #2
40        0.0, -1.0, 0.0, 0.0,  # box #3
41        0.0, 0.0,  0.0, 0.0,  # box #4
42        0.0, 1.0,  0.0, 0.0,  # box #5
43        0.0, 0.0,  0.0, 0.0   # box #6
44    ],
45    i3: [   # six anchors in center-size encoding
46        0.5, 0.5,   1.0, 1.0,  # anchor #1
47        0.5, 0.5,   1.0, 1.0,  # anchor #2
48        0.5, 0.5,   1.0, 1.0,  # anchor #3
49        0.5, 10.5,  1.0, 1.0,  # anchor #4
50        0.5, 10.5,  1.0, 1.0,  #  anchor #5
51        0.5, 100.5, 1.0, 1.0   # anchor #6
52    ]
53}
54
55output0 = {
56    o1: [0.95, 0.93, 0.0],
57    o2: [
58        0.0, 10.0, 1.0, 11.0,
59        0.0, 10.0, 1.0, 11.0,
60        0.0, 0.0, 0.0, 0.0
61    ],
62    o3: [1, 0, 0],
63    o4: [2],
64}
65
66Example((input0, output0)).AddVariations("relaxed", "float16")
67
68# TEST 2: DETECTION_POSTPROCESSING
69i1 = Input("scores", "TENSOR_FLOAT32", "{1, 6, 3}") # scores
70i2 = Input("roi", "TENSOR_FLOAT32", "{1, 6, 4}") # roi
71i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors
72
73o1 = Output("scoresOut", "TENSOR_FLOAT32", "{1, 3}") # scores out
74o2 = Output("roiOut", "TENSOR_FLOAT32", "{1, 3, 4}") # roi out
75o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out
76o4 = Output("detectionOut", "TENSOR_INT32", "{1}") # num detections out
77Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0, 0.5, False).To(o1, o2, o3, o4)
78
79input0 = {
80    i1: [   # class scores - two classes with background
81        0., .9, .8,
82        0., .75, .72,
83        0., .6, .5,
84        0., .93, .95,
85        0., .5, .4,
86        0., .3, .2
87    ],
88    i2: [   # six boxes in center-size encoding
89        0.0, 0.0,  0.0, 0.0,  # box #1
90        0.0, 1.0,  0.0, 0.0,  # box #2
91        0.0, -1.0, 0.0, 0.0,  # box #3
92        0.0, 0.0,  0.0, 0.0,  # box #4
93        0.0, 1.0,  0.0, 0.0,  # box #5
94        0.0, 0.0,  0.0, 0.0   # box #6
95    ],
96    i3: [   # six anchors in center-size encoding
97        0.5, 0.5,   1.0, 1.0,  # anchor #1
98        0.5, 0.5,   1.0, 1.0,  # anchor #2
99        0.5, 0.5,   1.0, 1.0,  # anchor #3
100        0.5, 10.5,  1.0, 1.0,  # anchor #4
101        0.5, 10.5,  1.0, 1.0,  #  anchor #5
102        0.5, 100.5, 1.0, 1.0   # anchor #6
103    ]
104}
105
106output0 = {
107    o1: [0.95, 0.9, 0.3],
108    o2: [
109        0.0, 10.0, 1.0, 11.0,
110        0.0, 0.0, 1.0, 1.0,
111        0.0, 100.0, 1.0, 101.0
112    ],
113    o3: [1, 0, 0],
114    o4: [3],
115}
116
117Example((input0, output0)).AddVariations("relaxed", "float16")
118
119# TEST 3: DETECTION_POSTPROCESSING
120i1 = Input("scores", "TENSOR_FLOAT32", "{1, 6, 3}") # scores
121i2 = Input("roi", "TENSOR_FLOAT32", "{1, 6, 7}") # roi
122i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors
123
124o1 = Output("scoresOut", "TENSOR_FLOAT32", "{1, 3}") # scores out
125o2 = Output("roiOut", "TENSOR_FLOAT32", "{1, 3, 4}") # roi out
126o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out
127o4 = Output("detectionOut", "TENSOR_INT32", "{1}") # num detections out
128Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0, 0.5, False).To(o1, o2, o3, o4)
129
130input0 = {
131    i1: [   # class scores - two classes with background
132        0., .9, .8,
133        0., .75, .72,
134        0., .6, .5,
135        0., .93, .95,
136        0., .5, .4,
137        0., .3, .2
138    ],
139    i2: [   # six boxes in center-size encoding
140        0.0, 0.0,  0.0, 0.0, 1.0, 2.0, 3.0,  # box #1
141        0.0, 1.0,  0.0, 0.0, 1.0, 2.0, 3.0,  # box #2
142        0.0, -1.0, 0.0, 0.0, 1.0, 2.0, 3.0,  # box #3
143        0.0, 0.0,  0.0, 0.0, 1.0, 2.0, 3.0,  # box #4
144        0.0, 1.0,  0.0, 0.0, 1.0, 2.0, 3.0,  # box #5
145        0.0, 0.0,  0.0, 0.0, 1.0, 2.0, 3.0   # box #6
146    ],
147    i3: [   # six anchors in center-size encoding
148        0.5, 0.5,   1.0, 1.0,  # anchor #1
149        0.5, 0.5,   1.0, 1.0,  # anchor #2
150        0.5, 0.5,   1.0, 1.0,  # anchor #3
151        0.5, 10.5,  1.0, 1.0,  # anchor #4
152        0.5, 10.5,  1.0, 1.0,  #  anchor #5
153        0.5, 100.5, 1.0, 1.0   # anchor #6
154    ]
155}
156
157output0 = {
158    o1: [0.95, 0.9, 0.3],
159    o2: [
160        0.0, 10.0, 1.0, 11.0,
161        0.0, 0.0, 1.0, 1.0,
162        0.0, 100.0, 1.0, 101.0
163    ],
164    o3: [1, 0, 0],
165    o4: [3],
166}
167
168Example((input0, output0)).AddVariations("relaxed", "float16")
169
170# TEST 4: DETECTION_POSTPROCESSING
171i1 = Input("scores", "TENSOR_FLOAT32", "{1, 6, 3}") # scores
172i2 = Input("roi", "TENSOR_FLOAT32", "{1, 6, 7}") # roi
173i3 = Input("anchors", "TENSOR_FLOAT32", "{6, 4}") # anchors
174
175o1 = Output("scoresOut", "TENSOR_FLOAT32", "{1, 3}") # scores out
176o2 = Output("roiOut", "TENSOR_FLOAT32", "{1, 3, 4}") # roi out
177o3 = Output("classesOut", "TENSOR_INT32", "{1, 3}") # classes out
178o4 = Output("detectionOut", "TENSOR_INT32", "{1}") # num detections out
179Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0, 0.5, True).To(o1, o2, o3, o4)
180
181input0 = {
182    i1: [   # class scores - two classes with background
183        0., .9, .8,
184        0., .75, .72,
185        0., .6, .5,
186        0., .93, .95,
187        0., .5, .4,
188        0., .3, .2
189    ],
190    i2: [   # six boxes in center-size encoding
191        0.0, 0.0,  0.0, 0.0, 1.0, 2.0, 3.0,  # box #1
192        0.0, 1.0,  0.0, 0.0, 1.0, 2.0, 3.0,  # box #2
193        0.0, -1.0, 0.0, 0.0, 1.0, 2.0, 3.0,  # box #3
194        0.0, 0.0,  0.0, 0.0, 1.0, 2.0, 3.0,  # box #4
195        0.0, 1.0,  0.0, 0.0, 1.0, 2.0, 3.0,  # box #5
196        0.0, 0.0,  0.0, 0.0, 1.0, 2.0, 3.0   # box #6
197    ],
198    i3: [   # six anchors in center-size encoding
199        0.5, 0.5,   1.0, 1.0,  # anchor #1
200        0.5, 0.5,   1.0, 1.0,  # anchor #2
201        0.5, 0.5,   1.0, 1.0,  # anchor #3
202        0.5, 10.5,  1.0, 1.0,  # anchor #4
203        0.5, 10.5,  1.0, 1.0,  #  anchor #5
204        0.5, 100.5, 1.0, 1.0   # anchor #6
205    ]
206}
207
208output0 = {
209    o1: [0.95, 0.9, 0.3],
210    o2: [
211        0.0, 10.0, 1.0, 11.0,
212        0.0, 0.0, 1.0, 1.0,
213        0.0, 100.0, 1.0, 101.0
214    ],
215    o3: [2, 1, 1],
216    o4: [3],
217}
218
219Example((input0, output0)).AddVariations("relaxed", "float16")
220