/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | QuantizedLSTMTest.cpp | 60 const uint32_t numBatches = inputOperandTypeParams[0].shape[0]; in QuantizedLSTMOpModel() local 67 OperandType cellStateOutOperandType(Type::TENSOR_QUANT16_SYMM, {numBatches, outputSize}, in QuantizedLSTMOpModel() 70 OperandType outputOperandType(Type::TENSOR_QUANT8_ASYMM, {numBatches, outputSize}, in QuantizedLSTMOpModel() 83 cellStateOut_.resize(numBatches * outputSize, 0); in QuantizedLSTMOpModel() 84 output_.resize(numBatches * outputSize, 0); in QuantizedLSTMOpModel() 240 const int numBatches = input.size(); in VerifyGoldens() local 241 EXPECT_GT(numBatches, 0); in VerifyGoldens() 248 for (int b = 0; b < numBatches; ++b) { in VerifyGoldens() 258 for (int b = 0; b < numBatches; ++b) { in VerifyGoldens() 272 const int numBatches = 2; in TEST_F() local [all …]
|
D | TransposeConv2D.cpp | 106 uint32_t numBatches = getSizeOfDimension(inputShape, 0); \ 136 for (uint32_t b = 0; b < numBatches; b++) { in transposeConvNhwc() 166 const uint32_t outerSize = numBatches * outputHeight * outputWidth; in transposeConvNhwc() 222 for (uint32_t b = 0; b < numBatches; b++) { in transposeConvNhwc() 257 const uint32_t outerSize = numBatches * outputHeight * outputWidth; in transposeConvNhwc() 364 for (uint32_t b = 0; b < numBatches; b++) { in transposeConvQuant8PerChannelNhwc() 398 const uint32_t outerSize = numBatches * outputHeight * outputWidth; in transposeConvQuant8PerChannelNhwc()
|
D | GenerateProposals.cpp | 71 uint32_t numBatches = getSizeOfDimension(imageInfoDataShape, 0); in bboxTransformFloat32() local 83 NN_RET_CHECK_LT(batchIndex, numBatches); in bboxTransformFloat32() 213 uint32_t numBatches = getSizeOfDimension(imageInfoShape, 0); in prepare() local 215 NN_RET_CHECK_GT(numBatches, 0u); in prepare() 855 uint32_t numBatches = getSizeOfDimension(scoresShape, 0); in generateProposalsNhwcFloat32Compute() local 898 for (uint32_t b = 0; b < numBatches; b++) { in generateProposalsNhwcFloat32Compute() 1128 uint32_t numBatches = getSizeOfDimension(scoreShape, 0); in prepare() local 1133 NN_RET_CHECK_EQ(getSizeOfDimension(bboxDeltasShape, 0), numBatches); in prepare() 1137 NN_RET_CHECK_EQ(getSizeOfDimension(imageInfoDataShape, 0), numBatches); in prepare() 1262 uint32_t numBatches = getSizeOfDimension(scoreShape, 0); in detectionPostprocessFloat32() local [all …]
|
D | RoiAlign.cpp | 58 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in roiAlignNhwc() local 77 NN_RET_CHECK_LT(batchId, numBatches); in roiAlignNhwc() 185 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in roiAlignQuantNhwc() local 209 NN_RET_CHECK_LT(batchId, numBatches); in roiAlignQuantNhwc() 340 uint32_t numBatches = getSizeOfDimension(input, 0); in prepare() local 346 NN_RET_CHECK_GT(numBatches, 0u); in prepare()
|
D | GroupedConv2D.cpp | 38 uint32_t numBatches = getSizeOfDimension(inputShape, 0); \ 64 for (uint32_t b = 0; b < numBatches; b++) { in groupedConvFloat32() 136 for (uint32_t b = 0; b < numBatches; b++) { in groupedConvQuant8() 241 for (uint32_t b = 0; b < numBatches; b++) { in groupedConvQuant8PerChannel()
|
D | InstanceNormalization.cpp | 42 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in instanceNormNhwc() local 46 for (uint32_t b = 0; b < numBatches; b++) { in instanceNormNhwc()
|
D | RoiPooling.cpp | 52 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in roiPoolingNhwc() local 71 NN_RET_CHECK_LT(batchId, numBatches); in roiPoolingNhwc() 186 [[maybe_unused]] uint32_t numBatches = getSizeOfDimension(input, 0); in prepare() local
|
D | QuantizedLSTM.cpp | 255 const uint32_t numBatches = SizeOfDimension(input, 0); in prepare() local 260 NN_RET_CHECK_EQ(SizeOfDimension(prevOutput, 0), numBatches); in prepare() 320 NN_CHECK_EQ(SizeOfDimension(prevCellState, 0), numBatches); in prepare()
|
D | Conv2D.cpp | 359 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in convQuant8PerChannelNhwc() local 394 for (uint32_t b = 0; b < numBatches; b++) { in convQuant8PerChannelNhwc() 452 [[maybe_unused]] uint32_t numBatches = getSizeOfDimension(inputShape, 0); in convQuant8PerChannelNhwc() local
|
D | DepthwiseConv2D.cpp | 285 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in depthwiseConvQuant8PerChannelNhwc() local 321 for (uint32_t b = 0; b < numBatches; b++) { in depthwiseConvQuant8PerChannelNhwc()
|
/packages/modules/NeuralNetworks/runtime/test/ |
D | TestValidateOperations.cpp | 3528 const int numBatches = 2; in detectionPostprocessingOpTest() local 3533 uint32_t inputDims[3] = {numBatches, numAnchors, numClasses}; in detectionPostprocessingOpTest() 3535 uint32_t deltasDims[3] = {numBatches, numAnchors, lengthBoxEncoding}; in detectionPostprocessingOpTest() 3552 uint32_t outputScoreDims[2] = {numBatches, maxNumDetectionsValue}; in detectionPostprocessingOpTest() 3554 uint32_t boundingBoxesDims[3] = {numBatches, maxNumDetectionsValue, 4}; in detectionPostprocessingOpTest() 3558 uint32_t numValidDims[1] = {numBatches}; in detectionPostprocessingOpTest()
|
/packages/modules/NeuralNetworks/tools/api/ |
D | types.spec | 5035 * and shape [numBatches, inputSize] specifying the input to the LSTM 5107 * and shape [numBatches, outputSize] specifying the cell state from the 5120 * and shape [numBatches, outputSize] which contains a cell state from
|