• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #pragma clang diagnostic push
20 #pragma clang diagnostic ignored "-Wunused-parameter"
21 #include <tensorflow/lite/kernels/internal/common.h>
22 #pragma clang diagnostic pop
23 
24 #include <algorithm>
25 #include <cfloat>
26 #include <cmath>
27 #include <vector>
28 
29 #include "CpuOperationUtils.h"
30 #include "GroupedConv2D.h"
31 #include "Operations.h"
32 #include "Tracing.h"
33 
34 namespace android {
35 namespace nn {
36 
37 #define ANDROID_NN_GROUPED_CONV_PARAMETERS                      \
38     uint32_t numBatches = getSizeOfDimension(inputShape, 0);    \
39     uint32_t inputHeight = getSizeOfDimension(inputShape, 1);   \
40     uint32_t inputWidth = getSizeOfDimension(inputShape, 2);    \
41     uint32_t inputDepth = getSizeOfDimension(inputShape, 3);    \
42     uint32_t filterHeight = getSizeOfDimension(filterShape, 1); \
43     uint32_t filterWidth = getSizeOfDimension(filterShape, 2);  \
44     uint32_t filterDepth = getSizeOfDimension(filterShape, 3);  \
45     uint32_t outputHeight = getSizeOfDimension(outputShape, 1); \
46     uint32_t outputWidth = getSizeOfDimension(outputShape, 2);  \
47     uint32_t outputDepth = getSizeOfDimension(outputShape, 3);  \
48     uint32_t outputGroupDepth = outputDepth / numGroups;
49 
groupedConvFloat32(const float * inputData,const Shape & inputShape,const float * filterData,const Shape & filterShape,const float * biasData,const Shape &,int32_t padding_left,int32_t,int32_t padding_top,int32_t,int32_t stride_width,int32_t stride_height,int32_t numGroups,int32_t activation,float * outputData,const Shape & outputShape)50 bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData,
51                         const Shape& filterShape, const float* biasData, const Shape& /*biasShape*/,
52                         int32_t padding_left, int32_t /*padding_right*/, int32_t padding_top,
53                         int32_t /*padding_bottom*/, int32_t stride_width, int32_t stride_height,
54                         int32_t numGroups, int32_t activation, float* outputData,
55                         const Shape& outputShape) {
56     NNTRACE_TRANS("groupConvFloat32");
57     ANDROID_NN_GROUPED_CONV_PARAMETERS
58 
59     float output_activation_min = 0.0f, output_activation_max = 0.0f;
60     CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
61 
62     const float* inputBase = inputData;
63     float* outPtr = outputData;
64     for (uint32_t b = 0; b < numBatches; b++) {
65         for (uint32_t h = 0; h < outputHeight; h++) {
66             for (uint32_t w = 0; w < outputWidth; w++) {
67                 const float* filterBase = filterData;
68                 for (int32_t g = 0; g < numGroups; g++) {
69                     for (uint32_t d = 0; d < outputGroupDepth; d++) {
70                         int32_t wInputOrigin =
71                                 static_cast<int32_t>(w) * stride_width - padding_left;
72                         int32_t hInputOrigin =
73                                 static_cast<int32_t>(h) * stride_height - padding_top;
74                         float sum = 0.0f;
75                         for (uint32_t i = 0; i < filterHeight; i++) {
76                             for (uint32_t j = 0; j < filterWidth; j++) {
77                                 for (uint32_t k = 0; k < filterDepth; k++) {
78                                     int32_t hInput = hInputOrigin + static_cast<int32_t>(i);
79                                     int32_t wInput = wInputOrigin + static_cast<int32_t>(j);
80                                     uint32_t dInput = filterDepth * g + k;
81                                     if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) &&
82                                         wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) {
83                                         uint32_t filterIndex =
84                                                 i * filterWidth * filterDepth + j * filterDepth + k;
85                                         uint32_t inputIndex = hInput * inputWidth * inputDepth +
86                                                               wInput * inputDepth + dInput;
87                                         sum += filterBase[filterIndex] * inputBase[inputIndex];
88                                     }
89                                 }
90                             }
91                         }
92                         sum += biasData[g * outputGroupDepth + d];
93                         sum = std::max(std::min(sum, output_activation_max), output_activation_min);
94                         outPtr[d] = sum;
95                         filterBase += filterHeight * filterWidth * filterDepth;
96                     }
97                     outPtr += outputGroupDepth;
98                 }
99             }
100         }
101         inputBase += inputHeight * inputWidth * inputDepth;
102     }
103 
104     return true;
105 }
106 
107 template <typename T>
groupedConvQuant8(const T * inputData,const Shape & inputShape,const T * filterData,const Shape & filterShape,const int32_t * biasData,const Shape & biasShape,int32_t padding_left,int32_t,int32_t padding_top,int32_t,int32_t stride_width,int32_t stride_height,int32_t numGroups,int32_t activation,T * outputData,const Shape & outputShape)108 bool groupedConvQuant8(const T* inputData, const Shape& inputShape, const T* filterData,
109                        const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
110                        int32_t padding_left, int32_t /*padding_right*/, int32_t padding_top,
111                        int32_t /*padding_bottom*/, int32_t stride_width, int32_t stride_height,
112                        int32_t numGroups, int32_t activation, T* outputData,
113                        const Shape& outputShape) {
114     NNTRACE_TRANS("groupConvQuant8");
115     ANDROID_NN_GROUPED_CONV_PARAMETERS
116 
117     int32_t inputOffset = -inputShape.offset;
118     int32_t filterOffset = -filterShape.offset;
119     int32_t outputOffset = outputShape.offset;
120 
121     double realMultiplier = 0.0;
122     int32_t outputMultiplier = 0;
123     int32_t outputShift = 0;
124     NN_RET_CHECK(GetQuantizedConvolutionMultiplier(inputShape, filterShape, biasShape, outputShape,
125                                                    &realMultiplier));
126     int exponent;
127     NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent));
128     outputShift = -exponent;
129 
130     int32_t output_activation_min = 0, output_activation_max = 0;
131     CalculateActivationRange<T>(activation, outputShape, &output_activation_min,
132                                 &output_activation_max);
133 
134     const T* inputBase = inputData;
135     T* outPtr = outputData;
136     for (uint32_t b = 0; b < numBatches; b++) {
137         for (uint32_t h = 0; h < outputHeight; h++) {
138             for (uint32_t w = 0; w < outputWidth; w++) {
139                 const T* filterBase = filterData;
140                 for (int32_t g = 0; g < numGroups; g++) {
141                     for (uint32_t d = 0; d < outputGroupDepth; d++) {
142                         int32_t wInputOrigin =
143                                 static_cast<int32_t>(w) * stride_width - padding_left;
144                         int32_t hInputOrigin =
145                                 static_cast<int32_t>(h) * stride_height - padding_top;
146                         int32_t sum = 0.0f;
147                         for (uint32_t i = 0; i < filterHeight; i++) {
148                             for (uint32_t j = 0; j < filterWidth; j++) {
149                                 for (uint32_t k = 0; k < filterDepth; k++) {
150                                     int32_t hInput = hInputOrigin + static_cast<int32_t>(i);
151                                     int32_t wInput = wInputOrigin + static_cast<int32_t>(j);
152                                     uint32_t dInput = filterDepth * g + k;
153                                     if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) &&
154                                         wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) {
155                                         uint32_t filterIndex =
156                                                 i * filterWidth * filterDepth + j * filterDepth + k;
157                                         uint32_t inputIndex = hInput * inputWidth * inputDepth +
158                                                               wInput * inputDepth + dInput;
159                                         sum += (static_cast<int32_t>(filterBase[filterIndex]) +
160                                                 filterOffset) *
161                                                (static_cast<int32_t>(inputBase[inputIndex]) +
162                                                 inputOffset);
163                                     }
164                                 }
165                             }
166                         }
167                         sum += biasData[g * outputGroupDepth + d];
168                         sum = tflite::MultiplyByQuantizedMultiplier(sum, outputMultiplier,
169                                                                     -outputShift);
170                         sum += outputOffset;
171                         sum = std::max(std::min(sum, output_activation_max), output_activation_min);
172                         outPtr[d] = static_cast<T>(sum);
173                         filterBase += filterHeight * filterWidth * filterDepth;
174                     }
175                     outPtr += outputGroupDepth;
176                 }
177             }
178         }
179         inputBase += inputHeight * inputWidth * inputDepth;
180     }
181 
182     return true;
183 }
184 
185 template bool groupedConvQuant8<int8_t>(const int8_t* inputData, const Shape& inputShape,
186                                         const int8_t* filterData, const Shape& filterShape,
187                                         const int32_t* biasData, const Shape& biasShape,
188                                         int32_t padding_left, int32_t padding_right,
189                                         int32_t padding_top, int32_t padding_bottom,
190                                         int32_t stride_width, int32_t stride_height,
191                                         int32_t numGroups, int32_t activation, int8_t* outputData,
192                                         const Shape& outputShape);
193 
194 template bool groupedConvQuant8<uint8_t>(const uint8_t* inputData, const Shape& inputShape,
195                                          const uint8_t* filterData, const Shape& filterShape,
196                                          const int32_t* biasData, const Shape& biasShape,
197                                          int32_t padding_left, int32_t padding_right,
198                                          int32_t padding_top, int32_t padding_bottom,
199                                          int32_t stride_width, int32_t stride_height,
200                                          int32_t numGroups, int32_t activation, uint8_t* outputData,
201                                          const Shape& outputShape);
202 
203 template <typename T>
groupedConvQuant8PerChannel(const T * inputData,const Shape & inputShape,const int8_t * filterData,const Shape & filterShape,const float * filterScales,const int32_t * biasData,const Shape & biasShape,int32_t padding_left,int32_t,int32_t padding_top,int32_t,int32_t stride_width,int32_t stride_height,int32_t numGroups,int32_t activation,T * outputData,const Shape & outputShape)204 bool groupedConvQuant8PerChannel(const T* inputData, const Shape& inputShape,
205                                  const int8_t* filterData, const Shape& filterShape,
206                                  const float* filterScales, const int32_t* biasData,
207                                  const Shape& biasShape, int32_t padding_left,
208                                  int32_t /*padding_right*/, int32_t padding_top,
209                                  int32_t /*padding_bottom*/, int32_t stride_width,
210                                  int32_t stride_height, int32_t numGroups, int32_t activation,
211                                  T* outputData, const Shape& outputShape) {
212     NNTRACE_TRANS("groupConvQuant8");
213     ANDROID_NN_GROUPED_CONV_PARAMETERS
214 
215     int32_t inputOffset = -inputShape.offset;
216     int32_t outputOffset = outputShape.offset;
217 
218     auto realMultiplier = std::vector<double>(outputDepth, .0f);
219     auto outputMultiplier = std::vector<int32_t>(outputDepth, 0);
220     auto outputShift = std::vector<int32_t>(outputDepth, 0);
221 
222     for (uint32_t i = 0; i < outputDepth; ++i) {
223         Shape filterChannelShape = filterShape;
224         filterChannelShape.scale = filterScales[i];
225         Shape biasChannelShape = biasShape;
226         biasChannelShape.scale = filterScales[i] * inputShape.scale;
227 
228         NN_RET_CHECK(GetQuantizedConvolutionMultiplier(
229                 inputShape, filterChannelShape, biasChannelShape, outputShape, &realMultiplier[i]));
230         int exponent;
231         NN_RET_CHECK(QuantizeMultiplier(realMultiplier[i], &outputMultiplier[i], &exponent));
232         outputShift[i] = -exponent;
233     }
234 
235     int32_t output_activation_min = 0, output_activation_max = 0;
236     CalculateActivationRange<T>(activation, outputShape, &output_activation_min,
237                                 &output_activation_max);
238 
239     const T* inputBase = inputData;
240     T* outPtr = outputData;
241     for (uint32_t b = 0; b < numBatches; b++) {
242         for (uint32_t h = 0; h < outputHeight; h++) {
243             for (uint32_t w = 0; w < outputWidth; w++) {
244                 const int8_t* filterBase = filterData;
245                 for (int32_t g = 0; g < numGroups; g++) {
246                     for (uint32_t d = 0; d < outputGroupDepth; d++) {
247                         int32_t wInputOrigin =
248                                 static_cast<int32_t>(w) * stride_width - padding_left;
249                         int32_t hInputOrigin =
250                                 static_cast<int32_t>(h) * stride_height - padding_top;
251                         int32_t sum = 0.0f;
252                         for (uint32_t i = 0; i < filterHeight; i++) {
253                             for (uint32_t j = 0; j < filterWidth; j++) {
254                                 for (uint32_t k = 0; k < filterDepth; k++) {
255                                     int32_t hInput = hInputOrigin + static_cast<int32_t>(i);
256                                     int32_t wInput = wInputOrigin + static_cast<int32_t>(j);
257                                     uint32_t dInput = filterDepth * g + k;
258                                     if (hInput >= 0 && hInput < static_cast<int32_t>(inputHeight) &&
259                                         wInput >= 0 && wInput < static_cast<int32_t>(inputWidth)) {
260                                         uint32_t filterIndex =
261                                                 i * filterWidth * filterDepth + j * filterDepth + k;
262                                         uint32_t inputIndex = hInput * inputWidth * inputDepth +
263                                                               wInput * inputDepth + dInput;
264                                         sum += (static_cast<int32_t>(filterBase[filterIndex])) *
265                                                (static_cast<int32_t>(inputBase[inputIndex]) +
266                                                 inputOffset);
267                                     }
268                                 }
269                             }
270                         }
271                         int channelIndex = g * outputGroupDepth + d;
272                         sum += biasData[channelIndex];
273                         sum = tflite::MultiplyByQuantizedMultiplier(
274                                 sum, outputMultiplier[channelIndex], -outputShift[channelIndex]);
275                         sum += outputOffset;
276                         sum = std::max(std::min(sum, output_activation_max), output_activation_min);
277                         outPtr[d] = static_cast<T>(sum);
278                         filterBase += filterHeight * filterWidth * filterDepth;
279                     }
280                     outPtr += outputGroupDepth;
281                 }
282             }
283         }
284         inputBase += inputHeight * inputWidth * inputDepth;
285     }
286 
287     return true;
288 }
289 
groupedConvFloat16(const _Float16 * inputData,const Shape & inputShape,const _Float16 * filterData,const Shape & filterShape,const _Float16 * biasData,const Shape & biasShape,int32_t padding_left,int32_t padding_right,int32_t padding_top,int32_t padding_bottom,int32_t stride_width,int32_t stride_height,int32_t numGroups,int32_t activation,_Float16 * outputData,const Shape & outputShape)290 bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape,
291                         const _Float16* filterData, const Shape& filterShape,
292                         const _Float16* biasData, const Shape& biasShape, int32_t padding_left,
293                         int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
294                         int32_t stride_width, int32_t stride_height, int32_t numGroups,
295                         int32_t activation, _Float16* outputData, const Shape& outputShape) {
296     NNTRACE_TRANS("groupConvFloat16");
297 
298     std::vector<float> inputData_float32(getNumberOfElements(inputShape));
299     std::vector<float> filterData_float32(getNumberOfElements(filterShape));
300     std::vector<float> biasData_float32(getNumberOfElements(biasShape));
301     std::vector<float> outputData_float32(getNumberOfElements(outputShape));
302 
303     convertFloat16ToFloat32(inputData, &inputData_float32);
304     convertFloat16ToFloat32(filterData, &filterData_float32);
305     convertFloat16ToFloat32(biasData, &biasData_float32);
306 
307     groupedConvFloat32(inputData_float32.data(), inputShape, filterData_float32.data(), filterShape,
308                        biasData_float32.data(), biasShape, padding_left, padding_right, padding_top,
309                        padding_bottom, stride_width, stride_height, numGroups, activation,
310                        outputData_float32.data(), outputShape);
311     convertFloat32ToFloat16(outputData_float32, outputData);
312 
313     return true;
314 }
315 
316 template bool groupedConvQuant8PerChannel<uint8_t>(
317         const uint8_t* inputData, const Shape& inputShape, const int8_t* filterData,
318         const Shape& filterShape, const float* filterScales, const int32_t* biasData,
319         const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top,
320         int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups,
321         int32_t activation, uint8_t* outputData, const Shape& outputShape);
322 
323 template bool groupedConvQuant8PerChannel<int8_t>(
324         const int8_t* inputData, const Shape& inputShape, const int8_t* filterData,
325         const Shape& filterShape, const float* filterScales, const int32_t* biasData,
326         const Shape& biasShape, int32_t padding_left, int32_t padding_right, int32_t padding_top,
327         int32_t padding_bottom, int32_t stride_width, int32_t stride_height, int32_t numGroups,
328         int32_t activation, int8_t* outputData, const Shape& outputShape);
329 
330 #undef ANDROID_NN_GROUPED_CONV_PARAMETERS
331 }  // namespace nn
332 }  // namespace android
333