• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Vendors should document their modifier usage in as much detail as
62  * possible, to ensure maximum compatibility across devices, drivers and
63  * applications.
64  *
65  * The authoritative list of format modifier codes is found in
66  * `include/uapi/drm/drm_fourcc.h`
67  */
68 
69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
70 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
71 
72 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
73 
74 /* Reserve 0 for the invalid format specifier */
75 #define DRM_FORMAT_INVALID	0
76 
77 /* color index */
78 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
79 
80 /* 8 bpp Red */
81 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
82 
83 /* 16 bpp Red */
84 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
85 
86 /* 16 bpp RG */
87 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
88 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
89 
90 /* 32 bpp RG */
91 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
92 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
93 
94 /* 8 bpp RGB */
95 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
96 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
97 
98 /* 16 bpp RGB */
99 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
100 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
101 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
102 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
103 
104 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
105 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
106 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
107 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
108 
109 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
110 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
111 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
112 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
113 
114 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
115 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
116 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
117 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
118 
119 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
120 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
121 
122 /* 24 bpp RGB */
123 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
124 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
125 
126 /* 32 bpp RGB */
127 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
128 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
129 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
130 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
131 
132 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
133 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
134 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
135 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
136 
137 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
138 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
139 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
140 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
141 
142 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
143 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
144 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
145 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
146 
147 /*
148  * Floating point 64bpp RGB
149  * IEEE 754-2008 binary16 half-precision float
150  * [15:0] sign:exponent:mantissa 1:5:10
151  */
152 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
153 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
154 
155 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
156 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
157 
158 /* packed YCbCr */
159 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
161 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
162 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
163 
164 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
166 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
167 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
168 
169 /*
170  * packed Y2xx indicate for each component, xx valid data occupy msb
171  * 16-xx padding occupy lsb
172  */
173 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
175 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
176 
177 /*
178  * packed Y4xx indicate for each component, xx valid data occupy msb
179  * 16-xx padding occupy lsb except Y410
180  */
181 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
182 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
183 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
184 
185 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
186 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
187 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
188 
189 /*
190  * packed YCbCr420 2x2 tiled formats
191  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
192  */
193 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
194 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
195 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
196 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
197 
198 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
199 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
200 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
201 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
202 
203 /*
204  * 1-plane YUV 4:2:0
205  * In these formats, the component ordering is specified (Y, followed by U
206  * then V), but the exact Linear layout is undefined.
207  * These formats can only be used with a non-Linear modifier.
208  */
209 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
210 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
211 
212 /*
213  * 2 plane RGB + A
214  * index 0 = RGB plane, same format as the corresponding non _A8 format has
215  * index 1 = A plane, [7:0] A
216  */
217 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
218 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
219 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
220 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
221 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
222 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
223 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
224 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
225 
226 /*
227  * 2 plane YCbCr
228  * index 0 = Y plane, [7:0] Y
229  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
230  * or
231  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
232  */
233 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
234 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
235 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
236 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
237 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
238 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
239 /*
240  * 2 plane YCbCr
241  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
242  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
243  */
244 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
245 
246 /*
247  * 2 plane YCbCr MSB aligned
248  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
249  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
250  */
251 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
252 
253 /*
254  * 2 plane YCbCr MSB aligned
255  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
256  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
257  */
258 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
259 
260 /*
261  * 2 plane YCbCr MSB aligned
262  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
263  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
264  */
265 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
266 
267 /*
268  * 2 plane YCbCr MSB aligned
269  * index 0 = Y plane, [15:0] Y little endian
270  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
271  */
272 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
273 
274 /* 3 plane non-subsampled (444) YCbCr
275  * 16 bits per component, but only 10 bits are used and 6 bits are padded
276  * index 0: Y plane, [15:0] Y:x [10:6] little endian
277  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
278  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
279  */
280 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
281 
282 /* 3 plane non-subsampled (444) YCrCb
283  * 16 bits per component, but only 10 bits are used and 6 bits are padded
284  * index 0: Y plane, [15:0] Y:x [10:6] little endian
285  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
286  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
287  */
288 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
289 
290 /*
291  * 2 plane packed YCbCr
292  * 2x2 subsampled Cr:Cb plane 10 bits per channel
293  * index 0 = Y plane, [9:0] Y [10] little endian
294  * index 1 = Cr:Cb plane, [19:0] Cr:Cb [10:10] little endian
295  */
296 #define DRM_FORMAT_Y010		fourcc_code('Y', '0', '1', '0')
297 
298 /*
299  * 3 plane YCbCr
300  * index 0: Y plane, [7:0] Y
301  * index 1: Cb plane, [7:0] Cb
302  * index 2: Cr plane, [7:0] Cr
303  * or
304  * index 1: Cr plane, [7:0] Cr
305  * index 2: Cb plane, [7:0] Cb
306  */
307 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
308 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
309 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
310 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
311 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
312 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
313 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
314 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
315 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
316 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
317 
318 
319 /*
320  * Format Modifiers:
321  *
322  * Format modifiers describe, typically, a re-ordering or modification
323  * of the data in a plane of an FB.  This can be used to express tiled/
324  * swizzled formats, or compression, or a combination of the two.
325  *
326  * The upper 8 bits of the format modifier are a vendor-id as assigned
327  * below.  The lower 56 bits are assigned as vendor sees fit.
328  */
329 
330 /* Vendor Ids: */
331 #define DRM_FORMAT_MOD_NONE           0
332 #define DRM_FORMAT_MOD_VENDOR_NONE    0
333 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
334 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
335 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
336 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
337 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
338 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
339 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
340 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
341 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
342 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
343 
344 /* add more to the end as needed */
345 
346 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
347 
348 #define fourcc_mod_code(vendor, val) \
349 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
350 
351 /*
352  * Format Modifier tokens:
353  *
354  * When adding a new token please document the layout with a code comment,
355  * similar to the fourcc codes above. drm_fourcc.h is considered the
356  * authoritative source for all of these.
357  *
358  * Generic modifier names:
359  *
360  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
361  * for layouts which are common across multiple vendors. To preserve
362  * compatibility, in cases where a vendor-specific definition already exists and
363  * a generic name for it is desired, the common name is a purely symbolic alias
364  * and must use the same numerical value as the original definition.
365  *
366  * Note that generic names should only be used for modifiers which describe
367  * generic layouts (such as pixel re-ordering), which may have
368  * independently-developed support across multiple vendors.
369  *
370  * In future cases where a generic layout is identified before merging with a
371  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
372  * 'NONE' could be considered. This should only be for obvious, exceptional
373  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
374  * apply to a single vendor.
375  *
376  * Generic names should not be used for cases where multiple hardware vendors
377  * have implementations of the same standardised compression scheme (such as
378  * AFBC). In those cases, all implementations should use the same format
379  * modifier(s), reflecting the vendor of the standard.
380  */
381 
382 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
383 
384 /*
385  * Invalid Modifier
386  *
387  * This modifier can be used as a sentinel to terminate the format modifiers
388  * list, or to initialize a variable with an invalid modifier. It might also be
389  * used to report an error back to userspace for certain APIs.
390  */
391 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
392 
393 /*
394  * Linear Layout
395  *
396  * Just plain linear layout. Note that this is different from no specifying any
397  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
398  * which tells the driver to also take driver-internal information into account
399  * and so might actually result in a tiled framebuffer.
400  */
401 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
402 
403 /*
404  * Set to access the secure buffer
405  *
406  * The secure buffer is used to store DRM(Digital Right Management) contents.
407  * DMA needs special authority to access the secure buffer. This modifier can
408  * be set to allow the DMA to access the secure buffer. This can be used in
409  * combination with another modifier.
410  */
411 #define DRM_FORMAT_MOD_PROTECTION	fourcc_mod_code(NONE, (1ULL << 51))
412 
413 /* Intel framebuffer modifiers */
414 
415 /*
416  * Intel X-tiling layout
417  *
418  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
419  * in row-major layout. Within the tile bytes are laid out row-major, with
420  * a platform-dependent stride. On top of that the memory can apply
421  * platform-depending swizzling of some higher address bits into bit6.
422  *
423  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
424  * On earlier platforms the is highly platforms specific and not useful for
425  * cross-driver sharing. It exists since on a given platform it does uniquely
426  * identify the layout in a simple way for i915-specific userspace, which
427  * facilitated conversion of userspace to modifiers. Additionally the exact
428  * format on some really old platforms is not known.
429  */
430 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
431 
432 /*
433  * Intel Y-tiling layout
434  *
435  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
436  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
437  * chunks column-major, with a platform-dependent height. On top of that the
438  * memory can apply platform-depending swizzling of some higher address bits
439  * into bit6.
440  *
441  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
442  * On earlier platforms the is highly platforms specific and not useful for
443  * cross-driver sharing. It exists since on a given platform it does uniquely
444  * identify the layout in a simple way for i915-specific userspace, which
445  * facilitated conversion of userspace to modifiers. Additionally the exact
446  * format on some really old platforms is not known.
447  */
448 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
449 
450 /*
451  * Intel Yf-tiling layout
452  *
453  * This is a tiled layout using 4Kb tiles in row-major layout.
454  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
455  * are arranged in four groups (two wide, two high) with column-major layout.
456  * Each group therefore consits out of four 256 byte units, which are also laid
457  * out as 2x2 column-major.
458  * 256 byte units are made out of four 64 byte blocks of pixels, producing
459  * either a square block or a 2:1 unit.
460  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
461  * in pixel depends on the pixel depth.
462  */
463 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
464 
465 /*
466  * Intel color control surface (CCS) for render compression
467  *
468  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
469  * The main surface will be plane index 0 and must be Y/Yf-tiled,
470  * the CCS will be plane index 1.
471  *
472  * Each CCS tile matches a 1024x512 pixel area of the main surface.
473  * To match certain aspects of the 3D hardware the CCS is
474  * considered to be made up of normal 128Bx32 Y tiles, Thus
475  * the CCS pitch must be specified in multiples of 128 bytes.
476  *
477  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
478  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
479  * But that fact is not relevant unless the memory is accessed
480  * directly.
481  */
482 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
483 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
484 
485 /*
486  * Intel color control surfaces (CCS) for Gen-12 render compression.
487  *
488  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
489  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
490  * main surface. In other words, 4 bits in CCS map to a main surface cache
491  * line pair. The main surface pitch is required to be a multiple of four
492  * Y-tile widths.
493  */
494 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
495 
496 /*
497  * Intel color control surfaces (CCS) for Gen-12 media compression
498  *
499  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
500  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
501  * main surface. In other words, 4 bits in CCS map to a main surface cache
502  * line pair. The main surface pitch is required to be a multiple of four
503  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
504  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
505  * planes 2 and 3 for the respective CCS.
506  */
507 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
508 
509 /*
510  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
511  *
512  * Macroblocks are laid in a Z-shape, and each pixel data is following the
513  * standard NV12 style.
514  * As for NV12, an image is the result of two frame buffers: one for Y,
515  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
516  * Alignment requirements are (for each buffer):
517  * - multiple of 128 pixels for the width
518  * - multiple of  32 pixels for the height
519  *
520  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
521  */
522 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
523 
524 /*
525  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
526  *
527  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
528  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
529  * they correspond to their 16x16 luma block.
530  */
531 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
532 
533 /*
534  * 4 plane YCbCr 4:2:0 10 bits per channel
535  * index 0: Y8 plane, [7:0] Y little endian
536  * index 1: Cr8:Cb8 plane, [15:0] CrCb little endian
537  * index 2: Y2 plane, [1:0] Y little endian
538  * index 3: Cr2:Cb2 plane, [3:0] CrCb little endian
539  */
540 #define DRM_FORMAT_MOD_SAMSUNG_YUV_8_2_SPLIT	fourcc_mod_code(SAMSUNG, 3)
541 
542 /*
543  * The colormap uses the color data generated by hardware instead of reading
544  * the data from the memory.
545  *
546  * It supports only solid color in BGRA8888 format. When it is used as
547  * a modifier, BGRA8888 format should be used and color value is passed through
548  * first handles[0].
549  */
550 #define DRM_FORMAT_MOD_SAMSUNG_COLORMAP		fourcc_mod_code(SAMSUNG, 4)
551 
552 /*
553  * Samsung Band Width Compression (SBWC) modifier
554  *
555  * SBWC is a specific lossless or lossy image compression protocol and format.
556  * It supports video image (YUV) compression to reduce the amount of data
557  * transferred between IP blocks. This modifier is used when to decode data or
558  * when to encode data through writeback.
559  */
560 #define SBWC_IDENTIFIER				(1 << 4)
561 #define SBWC_FORMAT_MOD_BLOCK_SIZE_MASK		(0xfULL << 5)
562 #define SBWC_BLOCK_SIZE_SET(blk_size)		\
563 		((blk_size << 5) & SBWC_FORMAT_MOD_BLOCK_SIZE_MASK)
564 #define SBWC_BLOCK_SIZE_GET(modifier)		\
565 		(((modifier) & SBWC_FORMAT_MOD_BLOCK_SIZE_MASK) >> 5)
566 #define SBWC_FORMAT_MOD_BLOCK_SIZE_32x2		(2ULL)
567 #define SBWC_FORMAT_MOD_BLOCK_SIZE_32x3		(3ULL)
568 #define SBWC_FORMAT_MOD_BLOCK_SIZE_32x4		(4ULL)
569 #define SBWC_FORMAT_MOD_BLOCK_SIZE_32x5		(5ULL)
570 #define SBWC_FORMAT_MOD_BLOCK_SIZE_32x6		(6ULL)
571 
572 #define SBWC_FORMAT_MOD_LOSSY			(1 << 12)
573 
574 #define DRM_FORMAT_MOD_SAMSUNG_SBWC(blk_size)	\
575 		fourcc_mod_code(SAMSUNG,	\
576 		(SBWC_BLOCK_SIZE_SET(blk_size) | SBWC_IDENTIFIER))
577 
578 /*
579  * Qualcomm Compressed Format
580  *
581  * Refers to a compressed variant of the base format that is compressed.
582  * Implementation may be platform and base-format specific.
583  *
584  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
585  * Pixel data pitch/stride is aligned with macrotile width.
586  * Pixel data height is aligned with macrotile height.
587  * Entire pixel data buffer is aligned with 4k(bytes).
588  */
589 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
590 
591 /* Vivante framebuffer modifiers */
592 
593 /*
594  * Vivante 4x4 tiling layout
595  *
596  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
597  * layout.
598  */
599 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
600 
601 /*
602  * Vivante 64x64 super-tiling layout
603  *
604  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
605  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
606  * major layout.
607  *
608  * For more information: see
609  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
610  */
611 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
612 
613 /*
614  * Vivante 4x4 tiling layout for dual-pipe
615  *
616  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
617  * different base address. Offsets from the base addresses are therefore halved
618  * compared to the non-split tiled layout.
619  */
620 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
621 
622 /*
623  * Vivante 64x64 super-tiling layout for dual-pipe
624  *
625  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
626  * starts at a different base address. Offsets from the base addresses are
627  * therefore halved compared to the non-split super-tiled layout.
628  */
629 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
630 
631 /* NVIDIA frame buffer modifiers */
632 
633 /*
634  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
635  *
636  * Pixels are arranged in simple tiles of 16 x 16 bytes.
637  */
638 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
639 
640 /*
641  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
642  * and Tegra GPUs starting with Tegra K1.
643  *
644  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
645  * based on the architecture generation.  GOBs themselves are then arranged in
646  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
647  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
648  * a block depth or height of "4").
649  *
650  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
651  * in full detail.
652  *
653  *       Macro
654  * Bits  Param Description
655  * ----  ----- -----------------------------------------------------------------
656  *
657  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
658  *             compatibility with the existing
659  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
660  *
661  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
662  *             compatibility with the existing
663  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
664  *
665  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
666  *             size).  Must be zero.
667  *
668  *             Note there is no log2(width) parameter.  Some portions of the
669  *             hardware support a block width of two gobs, but it is impractical
670  *             to use due to lack of support elsewhere, and has no known
671  *             benefits.
672  *
673  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
674  *             in blocks, specified via log2(tile width in blocks)).  Must be
675  *             zero.
676  *
677  * 19:12 k     Page Kind.  This value directly maps to a field in the page
678  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
679  *             in memory and can be derived from the tuple
680  *
681  *               (format, GPU model, compression type, samples per pixel)
682  *
683  *             Where compression type is defined below.  If GPU model were
684  *             implied by the format modifier, format, or memory buffer, page
685  *             kind would not need to be included in the modifier itself, but
686  *             since the modifier should define the layout of the associated
687  *             memory buffer independent from any device or other context, it
688  *             must be included here.
689  *
690  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
691  *             starting with Fermi GPUs.  Additionally, the mapping between page
692  *             kind and bit layout has changed at various points.
693  *
694  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
695  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
696  *               2 = Gob Height 8, Turing+ Page Kind mapping
697  *               3 = Reserved for future use.
698  *
699  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
700  *             bit remapping step that occurs at an even lower level than the
701  *             page kind and block linear swizzles.  This causes the layout of
702  *             surfaces mapped in those SOC's GPUs to be incompatible with the
703  *             equivalent mapping on other GPUs in the same system.
704  *
705  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
706  *               1 = Desktop GPU and Tegra Xavier+ Layout
707  *
708  * 25:23 c     Lossless Framebuffer Compression type.
709  *
710  *               0 = none
711  *               1 = ROP/3D, layout 1, exact compression format implied by Page
712  *                   Kind field
713  *               2 = ROP/3D, layout 2, exact compression format implied by Page
714  *                   Kind field
715  *               3 = CDE horizontal
716  *               4 = CDE vertical
717  *               5 = Reserved for future use
718  *               6 = Reserved for future use
719  *               7 = Reserved for future use
720  *
721  * 55:25 -     Reserved for future use.  Must be zero.
722  */
723 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
724 	fourcc_mod_code(NVIDIA, (0x10 | \
725 				 ((h) & 0xf) | \
726 				 (((k) & 0xff) << 12) | \
727 				 (((g) & 0x3) << 20) | \
728 				 (((s) & 0x1) << 22) | \
729 				 (((c) & 0x7) << 23)))
730 
731 /* To grandfather in prior block linear format modifiers to the above layout,
732  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
733  * with block-linear layouts, is remapped within drivers to the value 0xfe,
734  * which corresponds to the "generic" kind used for simple single-sample
735  * uncompressed color formats on Fermi - Volta GPUs.
736  */
737 static __inline__ __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)738 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
739 {
740 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
741 		return modifier;
742 	else
743 		return modifier | (0xfe << 12);
744 }
745 
746 /*
747  * 16Bx2 Block Linear layout, used by Tegra K1 and later
748  *
749  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
750  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
751  *
752  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
753  *
754  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
755  * Valid values are:
756  *
757  * 0 == ONE_GOB
758  * 1 == TWO_GOBS
759  * 2 == FOUR_GOBS
760  * 3 == EIGHT_GOBS
761  * 4 == SIXTEEN_GOBS
762  * 5 == THIRTYTWO_GOBS
763  *
764  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
765  * in full detail.
766  */
767 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
768 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
769 
770 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
771 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
772 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
773 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
774 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
775 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
776 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
777 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
778 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
779 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
780 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
781 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
782 
783 /*
784  * Some Broadcom modifiers take parameters, for example the number of
785  * vertical lines in the image. Reserve the lower 32 bits for modifier
786  * type, and the next 24 bits for parameters. Top 8 bits are the
787  * vendor code.
788  */
789 #define __fourcc_mod_broadcom_param_shift 8
790 #define __fourcc_mod_broadcom_param_bits 48
791 #define fourcc_mod_broadcom_code(val, params) \
792 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
793 #define fourcc_mod_broadcom_param(m) \
794 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
795 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
796 #define fourcc_mod_broadcom_mod(m) \
797 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
798 		 __fourcc_mod_broadcom_param_shift))
799 
800 /*
801  * Broadcom VC4 "T" format
802  *
803  * This is the primary layout that the V3D GPU can texture from (it
804  * can't do linear).  The T format has:
805  *
806  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
807  *   pixels at 32 bit depth.
808  *
809  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
810  *   16x16 pixels).
811  *
812  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
813  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
814  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
815  *
816  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
817  *   tiles) or right-to-left (odd rows of 4k tiles).
818  */
819 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
820 
821 /*
822  * Broadcom SAND format
823  *
824  * This is the native format that the H.264 codec block uses.  For VC4
825  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
826  *
827  * The image can be considered to be split into columns, and the
828  * columns are placed consecutively into memory.  The width of those
829  * columns can be either 32, 64, 128, or 256 pixels, but in practice
830  * only 128 pixel columns are used.
831  *
832  * The pitch between the start of each column is set to optimally
833  * switch between SDRAM banks. This is passed as the number of lines
834  * of column width in the modifier (we can't use the stride value due
835  * to various core checks that look at it , so you should set the
836  * stride to width*cpp).
837  *
838  * Note that the column height for this format modifier is the same
839  * for all of the planes, assuming that each column contains both Y
840  * and UV.  Some SAND-using hardware stores UV in a separate tiled
841  * image from Y to reduce the column height, which is not supported
842  * with these modifiers.
843  */
844 
845 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
846 	fourcc_mod_broadcom_code(2, v)
847 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
848 	fourcc_mod_broadcom_code(3, v)
849 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
850 	fourcc_mod_broadcom_code(4, v)
851 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
852 	fourcc_mod_broadcom_code(5, v)
853 
854 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
855 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
856 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
857 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
858 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
859 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
860 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
861 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
862 
863 /* Broadcom UIF format
864  *
865  * This is the common format for the current Broadcom multimedia
866  * blocks, including V3D 3.x and newer, newer video codecs, and
867  * displays.
868  *
869  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
870  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
871  * stored in columns, with padding between the columns to ensure that
872  * moving from one column to the next doesn't hit the same SDRAM page
873  * bank.
874  *
875  * To calculate the padding, it is assumed that each hardware block
876  * and the software driving it knows the platform's SDRAM page size,
877  * number of banks, and XOR address, and that it's identical between
878  * all blocks using the format.  This tiling modifier will use XOR as
879  * necessary to reduce the padding.  If a hardware block can't do XOR,
880  * the assumption is that a no-XOR tiling modifier will be created.
881  */
882 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
883 
884 /*
885  * Arm Framebuffer Compression (AFBC) modifiers
886  *
887  * AFBC is a proprietary lossless image compression protocol and format.
888  * It provides fine-grained random access and minimizes the amount of data
889  * transferred between IP blocks.
890  *
891  * AFBC has several features which may be supported and/or used, which are
892  * represented using bits in the modifier. Not all combinations are valid,
893  * and different devices or use-cases may support different combinations.
894  *
895  * Further information on the use of AFBC modifiers can be found in
896  * Documentation/gpu/afbc.rst
897  */
898 
899 /*
900  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
901  * modifiers) denote the category for modifiers. Currently we have only two
902  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
903  * different categories.
904  */
905 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
906 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
907 
908 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
909 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
910 
911 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
912 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
913 
914 /*
915  * AFBC superblock size
916  *
917  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
918  * size (in pixels) must be aligned to a multiple of the superblock size.
919  * Four lowest significant bits(LSBs) are reserved for block size.
920  *
921  * Where one superblock size is specified, it applies to all planes of the
922  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
923  * the first applies to the Luma plane and the second applies to the Chroma
924  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
925  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
926  */
927 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
928 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
929 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
930 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
931 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
932 
933 /*
934  * AFBC lossless colorspace transform
935  *
936  * Indicates that the buffer makes use of the AFBC lossless colorspace
937  * transform.
938  */
939 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
940 
941 /*
942  * AFBC block-split
943  *
944  * Indicates that the payload of each superblock is split. The second
945  * half of the payload is positioned at a predefined offset from the start
946  * of the superblock payload.
947  */
948 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
949 
950 /*
951  * AFBC sparse layout
952  *
953  * This flag indicates that the payload of each superblock must be stored at a
954  * predefined position relative to the other superblocks in the same AFBC
955  * buffer. This order is the same order used by the header buffer. In this mode
956  * each superblock is given the same amount of space as an uncompressed
957  * superblock of the particular format would require, rounding up to the next
958  * multiple of 128 bytes in size.
959  */
960 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
961 
962 /*
963  * AFBC copy-block restrict
964  *
965  * Buffers with this flag must obey the copy-block restriction. The restriction
966  * is such that there are no copy-blocks referring across the border of 8x8
967  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
968  */
969 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
970 
971 /*
972  * AFBC tiled layout
973  *
974  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
975  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
976  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
977  * larger bpp formats. The order between the tiles is scan line.
978  * When the tiled layout is used, the buffer size (in pixels) must be aligned
979  * to the tile size.
980  */
981 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
982 
983 /*
984  * AFBC solid color blocks
985  *
986  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
987  * can be reduced if a whole superblock is a single color.
988  */
989 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
990 
991 /*
992  * AFBC double-buffer
993  *
994  * Indicates that the buffer is allocated in a layout safe for front-buffer
995  * rendering.
996  */
997 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
998 
999 /*
1000  * AFBC buffer content hints
1001  *
1002  * Indicates that the buffer includes per-superblock content hints.
1003  */
1004 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1005 
1006 /* AFBC uncompressed storage mode
1007  *
1008  * Indicates that the buffer is using AFBC uncompressed storage mode.
1009  * In this mode all superblock payloads in the buffer use the uncompressed
1010  * storage mode, which is usually only used for data which cannot be compressed.
1011  * The buffer layout is the same as for AFBC buffers without USM set, this only
1012  * affects the storage mode of the individual superblocks. Note that even a
1013  * buffer without USM set may use uncompressed storage mode for some or all
1014  * superblocks, USM just guarantees it for all.
1015  */
1016 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1017 
1018 /*
1019  * Arm 16x16 Block U-Interleaved modifier
1020  *
1021  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1022  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1023  * in the block are reordered.
1024  */
1025 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1026 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1027 
1028 /*
1029  * Allwinner tiled modifier
1030  *
1031  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1032  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1033  * planes.
1034  *
1035  * With this tiling, the luminance samples are disposed in tiles representing
1036  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1037  * The pixel order in each tile is linear and the tiles are disposed linearly,
1038  * both in row-major order.
1039  */
1040 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1041 
1042 /*
1043  * Amlogic Video Framebuffer Compression modifiers
1044  *
1045  * Amlogic uses a proprietary lossless image compression protocol and format
1046  * for their hardware video codec accelerators, either video decoders or
1047  * video input encoders.
1048  *
1049  * It considerably reduces memory bandwidth while writing and reading
1050  * frames in memory.
1051  *
1052  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1053  * per component YCbCr 420, single plane :
1054  * - DRM_FORMAT_YUV420_8BIT
1055  * - DRM_FORMAT_YUV420_10BIT
1056  *
1057  * The first 8 bits of the mode defines the layout, then the following 8 bits
1058  * defines the options changing the layout.
1059  *
1060  * Not all combinations are valid, and different SoCs may support different
1061  * combinations of layout and options.
1062  */
1063 #define __fourcc_mod_amlogic_layout_mask 0xff
1064 #define __fourcc_mod_amlogic_options_shift 8
1065 #define __fourcc_mod_amlogic_options_mask 0xff
1066 
1067 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1068 	fourcc_mod_code(AMLOGIC, \
1069 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1070 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1071 			 << __fourcc_mod_amlogic_options_shift))
1072 
1073 /* Amlogic FBC Layouts */
1074 
1075 /*
1076  * Amlogic FBC Basic Layout
1077  *
1078  * The basic layout is composed of:
1079  * - a body content organized in 64x32 superblocks with 4096 bytes per
1080  *   superblock in default mode.
1081  * - a 32 bytes per 128x64 header block
1082  *
1083  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1084  */
1085 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1086 
1087 /*
1088  * Amlogic FBC Scatter Memory layout
1089  *
1090  * Indicates the header contains IOMMU references to the compressed
1091  * frames content to optimize memory access and layout.
1092  *
1093  * In this mode, only the header memory address is needed, thus the
1094  * content memory organization is tied to the current producer
1095  * execution and cannot be saved/dumped neither transferrable between
1096  * Amlogic SoCs supporting this modifier.
1097  *
1098  * Due to the nature of the layout, these buffers are not expected to
1099  * be accessible by the user-space clients, but only accessible by the
1100  * hardware producers and consumers.
1101  *
1102  * The user-space clients should expect a failure while trying to mmap
1103  * the DMA-BUF handle returned by the producer.
1104  */
1105 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1106 
1107 /* Amlogic FBC Layout Options Bit Mask */
1108 
1109 /*
1110  * Amlogic FBC Memory Saving mode
1111  *
1112  * Indicates the storage is packed when pixel size is multiple of word
1113  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1114  * memory.
1115  *
1116  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1117  * the basic layout and 3200 bytes per 64x32 superblock combined with
1118  * the scatter layout.
1119  */
1120 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1121 
1122 /* from 52 to 55 bit are reserved for AFBC encoder source informaton */
1123 #define AFBC_FORMAT_MOD_SOURCE_MASK	(0xfULL << 52)
1124 #define AFBC_FORMAT_MOD_SOURCE_GPU	(1ULL << 52)
1125 #define AFBC_FORMAT_MOD_SOURCE_G2D	(2ULL << 52)
1126 
1127 #if defined(__cplusplus)
1128 }
1129 #endif
1130 
1131 #endif /* DRM_FOURCC_H */
1132