1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * GUID Partition Table and Composite Disk generation code.
19 */
20
21 #include "host/libs/image_aggregator/image_aggregator.h"
22
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <fcntl.h>
26 #include <stdio.h>
27
28 #include <fstream>
29 #include <string>
30 #include <vector>
31
32 #include <android-base/file.h>
33 #include <android-base/logging.h>
34 #include <android-base/strings.h>
35 #include <cdisk_spec.pb.h>
36 #include <google/protobuf/text_format.h>
37 #include <sparse/sparse.h>
38 #include <uuid.h>
39 #include <zlib.h>
40
41 #include "common/libs/fs/shared_buf.h"
42 #include "common/libs/fs/shared_fd.h"
43 #include "common/libs/utils/cf_endian.h"
44 #include "common/libs/utils/files.h"
45 #include "common/libs/utils/size_utils.h"
46 #include "common/libs/utils/subprocess.h"
47 #include "host/libs/config/mbr.h"
48
49 namespace cuttlefish {
50 namespace {
51
52 constexpr int GPT_NUM_PARTITIONS = 128;
53 static const std::string CDISK_MAGIC = "composite_disk\x1d";
54 static const std::string QCOW2_MAGIC = "QFI\xfb";
55
56 /**
57 * Creates a "Protective" MBR Partition Table header. The GUID
58 * Partition Table Specification recommends putting this on the first sector
59 * of the disk, to protect against old disk formatting tools from misidentifying
60 * the GUID Partition Table later and doing the wrong thing.
61 */
ProtectiveMbr(std::uint64_t size)62 MasterBootRecord ProtectiveMbr(std::uint64_t size) {
63 MasterBootRecord mbr = {
64 .partitions = {{
65 .partition_type = 0xEE,
66 .first_lba = 1,
67 .num_sectors = (std::uint32_t) size / SECTOR_SIZE,
68 }},
69 .boot_signature = { 0x55, 0xAA },
70 };
71 return mbr;
72 }
73
74 struct __attribute__((packed)) GptHeader {
75 std::uint8_t signature[8];
76 std::uint8_t revision[4];
77 std::uint32_t header_size;
78 std::uint32_t header_crc32;
79 std::uint32_t reserved;
80 std::uint64_t current_lba;
81 std::uint64_t backup_lba;
82 std::uint64_t first_usable_lba;
83 std::uint64_t last_usable_lba;
84 std::uint8_t disk_guid[16];
85 std::uint64_t partition_entries_lba;
86 std::uint32_t num_partition_entries;
87 std::uint32_t partition_entry_size;
88 std::uint32_t partition_entries_crc32;
89 };
90
91 static_assert(sizeof(GptHeader) == 92);
92
93 struct __attribute__((packed)) GptPartitionEntry {
94 std::uint8_t partition_type_guid[16];
95 std::uint8_t unique_partition_guid[16];
96 std::uint64_t first_lba;
97 std::uint64_t last_lba;
98 std::uint64_t attributes;
99 std::uint16_t partition_name[36]; // UTF-16LE
100 };
101
102 static_assert(sizeof(GptPartitionEntry) == 128);
103
104 struct __attribute__((packed)) GptBeginning {
105 MasterBootRecord protective_mbr;
106 GptHeader header;
107 std::uint8_t header_padding[SECTOR_SIZE - sizeof(GptHeader)];
108 GptPartitionEntry entries[GPT_NUM_PARTITIONS];
109 std::uint8_t partition_alignment[3072];
110 };
111
112 static_assert(AlignToPowerOf2(sizeof(GptBeginning), PARTITION_SIZE_SHIFT) ==
113 sizeof(GptBeginning));
114
115 struct __attribute__((packed)) GptEnd {
116 GptPartitionEntry entries[GPT_NUM_PARTITIONS];
117 GptHeader footer;
118 std::uint8_t footer_padding[SECTOR_SIZE - sizeof(GptHeader)];
119 };
120
121 static_assert(sizeof(GptEnd) % SECTOR_SIZE == 0);
122
123 struct PartitionInfo {
124 MultipleImagePartition source;
125 std::uint64_t size;
126 std::uint64_t offset;
127
AlignedSizecuttlefish::__anon945511330111::PartitionInfo128 std::uint64_t AlignedSize() const { return AlignToPartitionSize(size); }
129 };
130
131 struct __attribute__((packed)) QCowHeader {
132 Be32 magic;
133 Be32 version;
134 Be64 backing_file_offset;
135 Be32 backing_file_size;
136 Be32 cluster_bits;
137 Be64 size;
138 Be32 crypt_method;
139 Be32 l1_size;
140 Be64 l1_table_offset;
141 Be64 refcount_table_offset;
142 Be32 refcount_table_clusters;
143 Be32 nb_snapshots;
144 Be64 snapshots_offset;
145 };
146
147 static_assert(sizeof(QCowHeader) == 72);
148
149 /*
150 * Returns the expanded file size of `file_path`. Note that the raw size of
151 * files doesn't match how large they may appear inside a VM.
152 *
153 * Supported types: Composite disk image, Qcows2, Android-Sparse, Raw
154 *
155 * Android-Sparse is a file format invented by Android that optimizes for
156 * chunks of zeroes or repeated data. The Android build system can produce
157 * sparse files to save on size of disk files after they are extracted from a
158 * disk file, as the imag eflashing process also can handle Android-Sparse
159 * images.
160 */
ExpandedStorageSize(const std::string & file_path)161 std::uint64_t ExpandedStorageSize(const std::string& file_path) {
162 android::base::unique_fd fd(open(file_path.c_str(), O_RDONLY));
163 CHECK(fd.get() >= 0) << "Could not open \"" << file_path << "\""
164 << strerror(errno);
165
166 std::uint64_t file_size = FileSize(file_path);
167
168 // Try to read the disk in a nicely-aligned block size unless the whole file
169 // is smaller.
170 constexpr uint64_t MAGIC_BLOCK_SIZE = 4096;
171 std::string magic(std::min(file_size, MAGIC_BLOCK_SIZE), '\0');
172 if (!android::base::ReadFully(fd, magic.data(), magic.size())) {
173 PLOG(FATAL) << "Fail to read: " << file_path;
174 return 0;
175 }
176 CHECK(lseek(fd, 0, SEEK_SET) != -1)
177 << "Fail to seek(\"" << file_path << "\")" << strerror(errno);
178
179 // Composite disk image
180 if (android::base::StartsWith(magic, CDISK_MAGIC)) {
181 // seek to the beginning of proto message
182 CHECK(lseek(fd, CDISK_MAGIC.size(), SEEK_SET) != -1)
183 << "Fail to seek(\"" << file_path << "\")" << strerror(errno);
184 std::string message;
185 if (!android::base::ReadFdToString(fd, &message)) {
186 PLOG(FATAL) << "Fail to read(cdisk): " << file_path;
187 return 0;
188 }
189 CompositeDisk cdisk;
190 if (!cdisk.ParseFromString(message)) {
191 PLOG(FATAL) << "Fail to parse(cdisk): " << file_path;
192 return 0;
193 }
194 return cdisk.length();
195 }
196
197 // Qcow2 image
198 if (android::base::StartsWith(magic, QCOW2_MAGIC)) {
199 QCowHeader header;
200 if (!android::base::ReadFully(fd, &header, sizeof(QCowHeader))) {
201 PLOG(FATAL) << "Fail to read(qcow2 header): " << file_path;
202 return 0;
203 }
204 return header.size.as_uint64_t();
205 }
206
207 // Android-Sparse
208 if (auto sparse =
209 sparse_file_import(fd, /* verbose */ false, /* crc */ false);
210 sparse) {
211 auto size = sparse_file_len(sparse, false, true);
212 sparse_file_destroy(sparse);
213 return size;
214 }
215
216 // raw image file
217 return file_size;
218 }
219
220 /*
221 * strncpy equivalent for u16 data. GPT disks use UTF16-LE for disk labels.
222 */
u16cpy(std::uint16_t * dest,std::uint16_t * src,std::size_t size)223 void u16cpy(std::uint16_t* dest, std::uint16_t* src, std::size_t size) {
224 while (size > 0 && *src) {
225 *dest = *src;
226 dest++;
227 src++;
228 size--;
229 }
230 if (size > 0) {
231 *dest = 0;
232 }
233 }
234
ToMultipleImagePartition(ImagePartition source)235 MultipleImagePartition ToMultipleImagePartition(ImagePartition source) {
236 return MultipleImagePartition{
237 .label = source.label,
238 .image_file_paths = std::vector{source.image_file_path},
239 .type = source.type,
240 .read_only = source.read_only,
241 };
242 }
243
244 /**
245 * Incremental builder class for producing partition tables. Add partitions
246 * one-by-one, then produce specification files
247 */
248 class CompositeDiskBuilder {
249 private:
250 std::vector<PartitionInfo> partitions_;
251 std::uint64_t next_disk_offset_;
252
GetPartitionGUID(MultipleImagePartition source)253 static const char* GetPartitionGUID(MultipleImagePartition source) {
254 // Due to some endianness mismatch in e2fsprogs GUID vs GPT, the GUIDs are
255 // rearranged to make the right GUIDs appear in gdisk
256 switch (source.type) {
257 case kLinuxFilesystem:
258 // Technically 0FC63DAF-8483-4772-8E79-3D69D8477DE4
259 return "AF3DC60F-8384-7247-8E79-3D69D8477DE4";
260 case kEfiSystemPartition:
261 // Technically C12A7328-F81F-11D2-BA4B-00A0C93EC93B
262 return "28732AC1-1FF8-D211-BA4B-00A0C93EC93B";
263 default:
264 LOG(FATAL) << "Unknown partition type: " << (int) source.type;
265 }
266 }
267
268 public:
CompositeDiskBuilder()269 CompositeDiskBuilder() : next_disk_offset_(sizeof(GptBeginning)) {}
270
AppendPartition(ImagePartition source)271 void AppendPartition(ImagePartition source) {
272 AppendPartition(ToMultipleImagePartition(source));
273 }
274
AppendPartition(MultipleImagePartition source)275 void AppendPartition(MultipleImagePartition source) {
276 uint64_t size = 0;
277 for (const auto& path : source.image_file_paths) {
278 size += ExpandedStorageSize(path);
279 }
280 auto aligned_size = AlignToPartitionSize(size);
281 CHECK(size == aligned_size || source.read_only)
282 << "read-write partition " << source.label
283 << " is not aligned to the size of " << (1 << PARTITION_SIZE_SHIFT);
284 partitions_.push_back(PartitionInfo{
285 .source = source,
286 .size = size,
287 .offset = next_disk_offset_,
288 });
289 next_disk_offset_ = next_disk_offset_ + aligned_size;
290 }
291
DiskSize() const292 std::uint64_t DiskSize() const {
293 return AlignToPowerOf2(next_disk_offset_ + sizeof(GptEnd), DISK_SIZE_SHIFT);
294 }
295
296 /**
297 * Generates a composite disk specification file, assuming that `header_file`
298 * and `footer_file` will be populated with the contents of `Beginning()` and
299 * `End()`.
300 */
MakeCompositeDiskSpec(const std::string & header_file,const std::string & footer_file) const301 CompositeDisk MakeCompositeDiskSpec(const std::string& header_file,
302 const std::string& footer_file) const {
303 CompositeDisk disk;
304 disk.set_version(2);
305 disk.set_length(DiskSize());
306
307 ComponentDisk* header = disk.add_component_disks();
308 header->set_file_path(header_file);
309 header->set_offset(0);
310
311 for (auto& partition : partitions_) {
312 uint64_t size = 0;
313 for (const auto& path : partition.source.image_file_paths) {
314 ComponentDisk* component = disk.add_component_disks();
315 component->set_file_path(path);
316 component->set_offset(partition.offset + size);
317 component->set_read_write_capability(
318 partition.source.read_only ? ReadWriteCapability::READ_ONLY
319 : ReadWriteCapability::READ_WRITE);
320 size += ExpandedStorageSize(path);
321 }
322 CHECK(partition.size == size);
323 // When partition's aligned size differs from its (unaligned) size
324 // reading the disk within the guest os would fail due to the gap.
325 // Putting any disk bigger than 4K can fill this gap.
326 // Here we reuse the header which is always > 4K.
327 // We don't fill the "writable" disk's hole and it should be an error
328 // because writes in the guest of can't be reflected to the backing file.
329 if (partition.AlignedSize() != partition.size) {
330 ComponentDisk* component = disk.add_component_disks();
331 component->set_file_path(header_file);
332 component->set_offset(partition.offset + partition.size);
333 component->set_read_write_capability(ReadWriteCapability::READ_ONLY);
334 }
335 }
336
337 ComponentDisk* footer = disk.add_component_disks();
338 footer->set_file_path(footer_file);
339 footer->set_offset(next_disk_offset_);
340
341 return disk;
342 }
343
344 /*
345 * Returns a GUID Partition Table header structure for all the disks that have
346 * been added with `AppendDisk`. Includes a protective MBR.
347 *
348 * This method is not deterministic: some data is generated such as the disk
349 * uuids.
350 */
Beginning() const351 GptBeginning Beginning() const {
352 if (partitions_.size() > GPT_NUM_PARTITIONS) {
353 LOG(FATAL) << "Too many partitions: " << partitions_.size();
354 return {};
355 }
356 GptBeginning gpt = {
357 .protective_mbr = ProtectiveMbr(DiskSize()),
358 .header =
359 {
360 .signature = {'E', 'F', 'I', ' ', 'P', 'A', 'R', 'T'},
361 .revision = {0, 0, 1, 0},
362 .header_size = sizeof(GptHeader),
363 .current_lba = 1,
364 .backup_lba = (DiskSize() / SECTOR_SIZE) - 1,
365 .first_usable_lba = sizeof(GptBeginning) / SECTOR_SIZE,
366 .last_usable_lba = (next_disk_offset_ / SECTOR_SIZE) - 1,
367 .partition_entries_lba = 2,
368 .num_partition_entries = GPT_NUM_PARTITIONS,
369 .partition_entry_size = sizeof(GptPartitionEntry),
370 },
371 };
372 uuid_generate(gpt.header.disk_guid);
373 for (std::size_t i = 0; i < partitions_.size(); i++) {
374 const auto& partition = partitions_[i];
375 gpt.entries[i] = GptPartitionEntry{
376 .first_lba = partition.offset / SECTOR_SIZE,
377 .last_lba =
378 (partition.offset + partition.AlignedSize()) / SECTOR_SIZE - 1,
379 };
380 uuid_generate(gpt.entries[i].unique_partition_guid);
381 if (uuid_parse(GetPartitionGUID(partition.source),
382 gpt.entries[i].partition_type_guid)) {
383 LOG(FATAL) << "Could not parse partition guid";
384 }
385 std::u16string wide_name(partitions_[i].source.label.begin(),
386 partitions_[i].source.label.end());
387 u16cpy((std::uint16_t*) gpt.entries[i].partition_name,
388 (std::uint16_t*) wide_name.c_str(), 36);
389 }
390 // Not sure these are right, but it works for bpttool
391 gpt.header.partition_entries_crc32 =
392 crc32(0, (std::uint8_t*) gpt.entries,
393 GPT_NUM_PARTITIONS * sizeof(GptPartitionEntry));
394 gpt.header.header_crc32 =
395 crc32(0, (std::uint8_t*) &gpt.header, sizeof(GptHeader));
396 return gpt;
397 }
398
399 /**
400 * Generates a GUID Partition Table footer that matches the header in `head`.
401 */
End(const GptBeginning & head) const402 GptEnd End(const GptBeginning& head) const {
403 GptEnd gpt;
404 std::memcpy((void*)gpt.entries, (void*)head.entries, sizeof(gpt.entries));
405 gpt.footer = head.header;
406 gpt.footer.partition_entries_lba =
407 (DiskSize() - sizeof(gpt.entries)) / SECTOR_SIZE - 1;
408 std::swap(gpt.footer.current_lba, gpt.footer.backup_lba);
409 gpt.footer.header_crc32 = 0;
410 gpt.footer.header_crc32 =
411 crc32(0, (std::uint8_t*) &gpt.footer, sizeof(GptHeader));
412 return gpt;
413 }
414 };
415
WriteBeginning(SharedFD out,const GptBeginning & beginning)416 bool WriteBeginning(SharedFD out, const GptBeginning& beginning) {
417 std::string begin_str((const char*) &beginning, sizeof(GptBeginning));
418 if (WriteAll(out, begin_str) != begin_str.size()) {
419 LOG(ERROR) << "Could not write GPT beginning: " << out->StrError();
420 return false;
421 }
422 return true;
423 }
424
WriteEnd(SharedFD out,const GptEnd & end)425 bool WriteEnd(SharedFD out, const GptEnd& end) {
426 auto disk_size = (end.footer.current_lba + 1) * SECTOR_SIZE;
427 auto footer_start = (end.footer.last_usable_lba + 1) * SECTOR_SIZE;
428 auto padding = disk_size - footer_start - sizeof(GptEnd);
429 std::string padding_str(padding, '\0');
430 if (WriteAll(out, padding_str) != padding_str.size()) {
431 LOG(ERROR) << "Could not write GPT end padding: " << out->StrError();
432 return false;
433 }
434 if (WriteAllBinary(out, &end) != sizeof(end)) {
435 LOG(ERROR) << "Could not write GPT end contents: " << out->StrError();
436 return false;
437 }
438 return true;
439 }
440
441 /**
442 * Converts any Android-Sparse image files in `partitions` to raw image files.
443 *
444 * Android-Sparse is a file format invented by Android that optimizes for
445 * chunks of zeroes or repeated data. The Android build system can produce
446 * sparse files to save on size of disk files after they are extracted from a
447 * disk file, as the imag eflashing process also can handle Android-Sparse
448 * images.
449 *
450 * crosvm has read-only support for Android-Sparse files, but QEMU does not
451 * support them.
452 */
DeAndroidSparse(const std::vector<ImagePartition> & partitions)453 void DeAndroidSparse(const std::vector<ImagePartition>& partitions) {
454 for (const auto& partition : partitions) {
455 auto fd = open(partition.image_file_path.c_str(), O_RDONLY);
456 if (fd < 0) {
457 PLOG(FATAL) << "Could not open \"" << partition.image_file_path;
458 break;
459 }
460 auto sparse = sparse_file_import(fd, /* verbose */ false, /* crc */ false);
461 if (!sparse) {
462 close(fd);
463 continue;
464 }
465 LOG(INFO) << "Desparsing " << partition.image_file_path;
466 std::string out_file_name = partition.image_file_path + ".desparse";
467 auto write_fd = open(out_file_name.c_str(), O_RDWR | O_CREAT | O_TRUNC,
468 S_IRUSR | S_IWUSR | S_IRGRP);
469 if (write_fd < 0) {
470 PLOG(FATAL) << "Could not open " << out_file_name;
471 }
472 int write_status = sparse_file_write(sparse, write_fd, /* gz */ false,
473 /* sparse */ false, /* crc */ false);
474 if (write_status < 0) {
475 LOG(FATAL) << "Failed to desparse \"" << partition.image_file_path
476 << "\": " << write_status;
477 }
478 close(write_fd);
479 if (rename(out_file_name.c_str(), partition.image_file_path.c_str()) < 0) {
480 int error_num = errno;
481 LOG(FATAL) << "Could not move \"" << out_file_name << "\" to \""
482 << partition.image_file_path << "\": " << strerror(error_num);
483 }
484 sparse_file_destroy(sparse);
485 close(fd);
486 }
487 }
488
489 } // namespace
490
AlignToPartitionSize(uint64_t size)491 uint64_t AlignToPartitionSize(uint64_t size) {
492 return AlignToPowerOf2(size, PARTITION_SIZE_SHIFT);
493 }
494
AggregateImage(const std::vector<ImagePartition> & partitions,const std::string & output_path)495 void AggregateImage(const std::vector<ImagePartition>& partitions,
496 const std::string& output_path) {
497 DeAndroidSparse(partitions);
498 CompositeDiskBuilder builder;
499 for (auto& partition : partitions) {
500 builder.AppendPartition(partition);
501 }
502 auto output = SharedFD::Creat(output_path, 0600);
503 auto beginning = builder.Beginning();
504 if (!WriteBeginning(output, beginning)) {
505 LOG(FATAL) << "Could not write GPT beginning to \"" << output_path
506 << "\": " << output->StrError();
507 }
508 for (auto& disk : partitions) {
509 auto disk_fd = SharedFD::Open(disk.image_file_path, O_RDONLY);
510 auto file_size = FileSize(disk.image_file_path);
511 if (!output->CopyFrom(*disk_fd, file_size)) {
512 LOG(FATAL) << "Could not copy from \"" << disk.image_file_path
513 << "\" to \"" << output_path << "\": " << output->StrError();
514 }
515 // Handle disk images that are not aligned to PARTITION_SIZE_SHIFT
516 std::uint64_t padding = AlignToPartitionSize(file_size) - file_size;
517 std::string padding_str;
518 padding_str.resize(padding, '\0');
519 if (WriteAll(output, padding_str) != padding_str.size()) {
520 LOG(FATAL) << "Could not write partition padding to \"" << output_path
521 << "\": " << output->StrError();
522 }
523 }
524 if (!WriteEnd(output, builder.End(beginning))) {
525 LOG(FATAL) << "Could not write GPT end to \"" << output_path
526 << "\": " << output->StrError();
527 }
528 };
529
CreateCompositeDisk(std::vector<ImagePartition> partitions,const std::string & header_file,const std::string & footer_file,const std::string & output_composite_path)530 void CreateCompositeDisk(std::vector<ImagePartition> partitions,
531 const std::string& header_file,
532 const std::string& footer_file,
533 const std::string& output_composite_path) {
534 std::vector<MultipleImagePartition> multiple_image_partitions;
535 for (const auto& partition : partitions) {
536 multiple_image_partitions.push_back(ToMultipleImagePartition(partition));
537 }
538 return CreateCompositeDisk(std::move(multiple_image_partitions), header_file,
539 footer_file, output_composite_path);
540 }
541
CreateCompositeDisk(std::vector<MultipleImagePartition> partitions,const std::string & header_file,const std::string & footer_file,const std::string & output_composite_path)542 void CreateCompositeDisk(std::vector<MultipleImagePartition> partitions,
543 const std::string& header_file,
544 const std::string& footer_file,
545 const std::string& output_composite_path) {
546 CompositeDiskBuilder builder;
547 for (auto& partition : partitions) {
548 builder.AppendPartition(partition);
549 }
550 auto header = SharedFD::Creat(header_file, 0600);
551 auto beginning = builder.Beginning();
552 if (!WriteBeginning(header, beginning)) {
553 LOG(FATAL) << "Could not write GPT beginning to \"" << header_file
554 << "\": " << header->StrError();
555 }
556 auto footer = SharedFD::Creat(footer_file, 0600);
557 if (!WriteEnd(footer, builder.End(beginning))) {
558 LOG(FATAL) << "Could not write GPT end to \"" << footer_file
559 << "\": " << footer->StrError();
560 }
561 auto composite_proto = builder.MakeCompositeDiskSpec(header_file, footer_file);
562 std::ofstream composite(output_composite_path.c_str(),
563 std::ios::binary | std::ios::trunc);
564 composite << CDISK_MAGIC;
565 composite_proto.SerializeToOstream(&composite);
566 composite.flush();
567 }
568
CreateQcowOverlay(const std::string & crosvm_path,const std::string & backing_file,const std::string & output_overlay_path)569 void CreateQcowOverlay(const std::string& crosvm_path,
570 const std::string& backing_file,
571 const std::string& output_overlay_path) {
572 Command cmd(crosvm_path);
573 cmd.AddParameter("create_qcow2");
574 cmd.AddParameter("--backing_file=", backing_file);
575 cmd.AddParameter(output_overlay_path);
576
577 std::string stdout_str;
578 std::string stderr_str;
579 int success =
580 RunWithManagedStdio(std::move(cmd), nullptr, &stdout_str, &stderr_str);
581
582 if (success != 0) {
583 LOG(ERROR) << "Failed to run `" << crosvm_path
584 << " create_qcow2 --backing_file=" << backing_file << " "
585 << output_overlay_path << "`";
586 LOG(ERROR) << "stdout:\n###\n" << stdout_str << "\n###";
587 LOG(ERROR) << "stderr:\n###\n" << stderr_str << "\n###";
588 LOG(FATAL) << "Return code: \"" << success << "\"";
589 }
590 }
591
592 } // namespace cuttlefish
593