• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CLGEMMCONVOLUTIONLAYER_H
25 #define ARM_COMPUTE_CLGEMMCONVOLUTIONLAYER_H
26 
27 #include "arm_compute/runtime/IFunction.h"
28 
29 #include "arm_compute/core/CL/CLKernelLibrary.h"
30 #include "arm_compute/core/Types.h"
31 #include "arm_compute/runtime/CL/CLTensor.h"
32 #include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
33 #include "arm_compute/runtime/CL/functions/CLGEMM.h"
34 #include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
35 #include "arm_compute/runtime/IMemoryManager.h"
36 #include "arm_compute/runtime/ITransformWeights.h"
37 #include "arm_compute/runtime/IWeightsManager.h"
38 #include "arm_compute/runtime/MemoryGroup.h"
39 
40 #include <memory>
41 
42 namespace arm_compute
43 {
44 class CLCol2ImKernel;
45 class CLIm2ColKernel;
46 class CLWeightsReshapeKernel;
47 class ICLTensor;
48 
49 /** Function to reshape and transpose the weights. This function calls the following kernels:
50  * -# @ref CLWeightsReshapeKernel
51  */
52 class CLConvolutionLayerReshapeWeights : public IFunction
53 {
54 public:
55     /** Constructor */
56     CLConvolutionLayerReshapeWeights();
57     /** Prevent instances of this class from being copied */
58     CLConvolutionLayerReshapeWeights(const CLConvolutionLayerReshapeWeights &) = delete;
59     /** Prevent instances of this class from being copied */
60     CLConvolutionLayerReshapeWeights &operator=(const CLConvolutionLayerReshapeWeights &) = delete;
61     /** Default move constructor */
62     CLConvolutionLayerReshapeWeights(CLConvolutionLayerReshapeWeights &&) = default;
63     /** Default move assignment operator */
64     CLConvolutionLayerReshapeWeights &operator=(CLConvolutionLayerReshapeWeights &&) = default;
65     /** Default destructor */
66     ~CLConvolutionLayerReshapeWeights();
67     /** Set the input and output tensors.
68      *
69      * @param[in]  weights    Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
70      *                        Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
71      * @param[in]  biases     Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p weights.
72      * @param[out] output     Destination tensor. Data types supported: Same as @p weights.
73      * @param[in]  num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
74      */
75     void configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups = 1);
76     /** Set the input and output tensors.
77      *
78      * @param[in]  compile_context The compile context to be used.
79      * @param[in]  weights         Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
80      *                             Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
81      * @param[in]  biases          Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p weights.
82      * @param[out] output          Destination tensor. Data types supported: Same as @p weights.
83      * @param[in]  num_groups      (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
84      */
85     void configure(const CLCompileContext &compile_context, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, unsigned int num_groups = 1);
86     /** Static function to check if given info will lead to a valid configuration of @ref CLConvolutionLayerReshapeWeights
87      *
88      * @param[in] weights    Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
89      *                       Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
90      * @param[in] biases     Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p weights.
91      * @param[in] output     Destination tensor. Data types supported: Same as @p weights.
92      * @param[in] num_groups (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
93      *
94      * @return a status
95      */
96     static Status validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, unsigned int num_groups = 1);
97     // Inherited methods overridden:
98     void run() override;
99 
100 private:
101     std::unique_ptr<CLWeightsReshapeKernel> _weights_reshape_kernel;
102 };
103 
104 namespace weights_transformations
105 {
106 /** Basic function to manage the reshape weights generated from @ref CLConvolutionLayerReshapeWeights */
107 class CLConvolutionLayerReshapeWeightsTransform : public ITransformWeights
108 {
109 public:
110     /** Configures the @ref CLConvolutionLayerReshapeWeights function
111      *
112      * @param[in] input      Input tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
113      * @param[in] biases     Biases tensor. Data type supported: same as @p input, S32 if @p input is quantized.
114      * @param[in] num_groups Number of groups when performing a grouped convolution.
115      */
configure(const ICLTensor * input,const ICLTensor * biases,unsigned int num_groups)116     void configure(const ICLTensor *input, const ICLTensor *biases, unsigned int num_groups)
117     {
118         configure(CLKernelLibrary::get().get_compile_context(), input, biases, num_groups);
119     }
120     /** Configures the @ref CLConvolutionLayerReshapeWeights function
121      *
122      * @param[in] compile_context The compile context to be used.
123      * @param[in] input           Input tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/QSYMM8_PER_CHANNEL/F16/F32.
124      * @param[in] biases          Biases tensor. Data type supported: same as @p input, S32 if @p input is quantized.
125      * @param[in] num_groups      Number of groups when performing a grouped convolution.
126      */
configure(const CLCompileContext & compile_context,const ICLTensor * input,const ICLTensor * biases,unsigned int num_groups)127     void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *biases, unsigned int num_groups)
128     {
129         _bias_bit   = (biases != nullptr) ? 1 : 0;
130         _num_groups = num_groups;
131         _func.configure(compile_context, input, biases, &_output, num_groups);
132     }
133 
134     //Inherited method override
run()135     void run() override
136     {
137         _output.allocator()->allocate();
138         _func.run();
139         _reshape_run = true;
140     }
141 
142     //Inherited method override
get_weights()143     ICLTensor *get_weights() override
144     {
145         return &_output;
146     }
147 
148     //Inherited method override
release()149     void release() override
150     {
151         _output.allocator()->free();
152     }
153 
154     //Inherited method override
uid()155     uint32_t uid() override
156     {
157         return ((0x9) | (_bias_bit << 7) | (_num_groups << 8));
158     }
159 
160 private:
161     CLTensor                         _output{};
162     CLConvolutionLayerReshapeWeights _func{};
163     int32_t                          _bias_bit{ 0 };
164     unsigned int                     _num_groups{ 0 };
165 };
166 } // namespace weights_transformations
167 
168 /** Basic function to compute the convolution layer. This function calls the following OpenCL kernels/functions:
169  *
170  * -# @ref CLIm2ColKernel
171  * -# @ref CLGEMM (if the data type is FP32 or FP16)
172  * -# @ref CLGEMMLowpMatrixMultiplyCore (if the data type is QASYMM8/QASYMM8_SIGNED)
173  * -# @ref CLGEMMLowpOutputStage with QUANTIZE_DOWN_FIXEDPOINT type of quantization (if the data type is QASYMM8/QASYMM8_SIGNED)
174  * -# @ref CLCol2ImKernel (if NCHW data layout)
175  */
176 class CLGEMMConvolutionLayer : public IFunction
177 {
178 public:
179     /** Constructor
180      *
181      * @param[in] memory_manager  (Optional) Memory manager.
182      * @param[in] weights_manager (Optional) Weights manager.
183      */
184     CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr, IWeightsManager *weights_manager = nullptr);
185     /** Prevent instances of this class from being copied (As this class contains pointers) */
186     CLGEMMConvolutionLayer(const CLGEMMConvolutionLayer &) = delete;
187     /** Default move constructor */
188     CLGEMMConvolutionLayer(CLGEMMConvolutionLayer &&) = default;
189     /** Prevent instances of this class from being copied (As this class contains pointers) */
190     CLGEMMConvolutionLayer &operator=(const CLGEMMConvolutionLayer &) = delete;
191     /** Default move assignment operator */
192     CLGEMMConvolutionLayer &operator=(CLGEMMConvolutionLayer &&) = default;
193     /**Default destructor */
194     ~CLGEMMConvolutionLayer();
195     /** Set the input and output tensors.
196      *
197      * @param[in]  input        Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
198      *                          while every optional dimension from 4 and above represent a batch of inputs.
199      *                          Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
200      * @param[in]  weights      Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
201      *                          Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
202      * @param[in]  biases       Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
203      *                          Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
204      * @param[out] output       Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
205      *                          Data types supported: Same as @p input.
206      * @param[in]  conv_info    Contains padding and stride information described in @ref PadStrideInfo.
207      * @param[in]  weights_info Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
208      *                          tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
209      * @param[in]  dilation     (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
210      * @param[in]  act_info     (Optional) Activation layer information in case of a fused activation.
211      * @param[in]  num_groups   (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
212      */
213     void configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info = WeightsInfo(),
214                    const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), unsigned int num_groups = 1);
215     /** Set the input and output tensors.
216      *
217      * @param[in]  compile_context The compile context to be used.
218      * @param[in]  input           Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
219      *                             while every optional dimension from 4 and above represent a batch of inputs.
220      *                             Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
221      * @param[in]  weights         Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
222      *                             Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
223      * @param[in]  biases          Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
224      *                             Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
225      * @param[out] output          Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
226      *                             Data types supported: Same as @p input.
227      * @param[in]  conv_info       Contains padding and stride information described in @ref PadStrideInfo.
228      * @param[in]  weights_info    Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
229      *                             tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
230      * @param[in]  dilation        (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
231      * @param[in]  act_info        (Optional) Activation layer information in case of a fused activation.
232      * @param[in]  num_groups      (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
233      */
234     void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
235                    const WeightsInfo &weights_info = WeightsInfo(),
236                    const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), unsigned int num_groups = 1);
237     /** Static function to check if given info will lead to a valid configuration of @ref CLGEMMConvolutionLayer.
238      *
239      * @param[in]  input        Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
240      *                          while every optional dimension from 4 and above represent a batch of inputs.
241      *                          Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
242      * @param[in]  weights      Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM].
243      *                          Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
244      * @param[in]  biases       Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
245      *                          Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
246      * @param[out] output       Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
247      *                          Data types supported: Same as @p input.
248      * @param[in]  conv_info    Contains padding and stride information described in @ref PadStrideInfo.
249      * @param[in]  weights_info Specifies if the weights tensor has been reshaped with CLWeightsReshapeKernel. If this is not part of the fully connected layer the weights
250      *                          tensor has also been transposed with CLGEMMReshapeRHSMatrixKernel. Data type supported: Same as @p input.
251      * @param[in]  dilation     (Optional) Dilation, in elements, across x and y. Defaults to (1, 1).
252      * @param[in]  act_info     (Optional) Activation layer information in case of a fused activation.
253      * @param[in]  num_groups   (Optional) Number of groups when performing a grouped convolution. num_groups != 1 is only supported for NCHW data layout
254      *
255      * @return a status
256      */
257     static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
258                            const WeightsInfo &weights_info = WeightsInfo(), const Size2D &dilation = Size2D(1U, 1U), const ActivationLayerInfo &act_info = ActivationLayerInfo(), unsigned int num_groups = 1);
259 
260     // Inherited methods overridden:
261     void run() override;
262     void prepare() override;
263 
264 private:
265     /** Configures the appropriate matrix multiply routine
266      *
267      * @param[in]      compile_context       The compile context to be used.
268      * @param[in]      input                 Input tensor. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
269      * @param[in]      weights               Weights tensor. Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or
270      *                                       QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
271      * @param[in]      biases                Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
272      *                                       Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
273      * @param[in, out] output                Output tensor. Data types supported: same as @p input.
274      * @param[in]      gemmlowp_output_stage GEMMLowp output stage info
275      * @param[in]      gemm_3d_depth         Depth of GEMM 3D
276      * @param[in]      act_info              Activation to apply after the matrix multiplication
277      */
278     void configure_mm(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
279                       const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
280                       int gemm_3d_depth, const ActivationLayerInfo &act_info);
281     /** Static function to check if given info will lead to a valid configuration of @ref CLGEMMConvolutionLayer matrix multiply routines
282      *
283      * @param[in] input                 Input tensor info. Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
284      * @param[in] weights               Weights tensor info. Data type supported: Same as @p input or QASYMM8/QSYMM8_PER_CHANNEL when @p input is QASYMM8 or
285      *                                  QASYMM8_SIGNED/QSYMM8_PER_CHANNEL when @p input is QASYMM8_SIGNED.
286      * @param[in] biases                Biases tensor info. Shared biases supported. Biases are 1D tensor with dimensions [OFM].
287      *                                  Data type supported: Should match @p input data type, except for input of quantized type where biases should be of S32 type.
288      * @param[in] output                Output tensor info. Data types supported: same as @p input.
289      * @param[in] gemmlowp_output_stage GEMMLowp output stage info
290      * @param[in] gemm_3d_depth         Depth of GEMM 3D
291      * @param[in] skip_im2col           Flag which specifies if im2col has to be skipped. i.e. 1x1 convolution with NHWC data layout.
292      * @param[in] act_info              Activation to apply after the matrix multiplication
293      *
294      * @return a status
295      */
296     static Status validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const GEMMLowpOutputStageInfo &gemmlowp_output_stage,
297                               int gemm_3d_depth, bool skip_im2col, const ActivationLayerInfo &act_info);
298 
299 private:
300     MemoryGroup                                                        _memory_group;
301     IWeightsManager                                                   *_weights_manager;
302     CLConvolutionLayerReshapeWeights                                   _reshape_weights;
303     weights_transformations::CLConvolutionLayerReshapeWeightsTransform _reshape_weights_managed;
304     std::unique_ptr<CLIm2ColKernel>                                    _im2col_kernel;
305     CLGEMM                                                             _mm_gemm;
306     CLGEMMLowpMatrixMultiplyCore                                       _mm_gemmlowp;
307     std::unique_ptr<CLCol2ImKernel>                                    _col2im_kernel;
308     CLActivationLayer                                                  _activationlayer_function;
309 
310     const ICLTensor *_original_weights;
311 
312     CLTensor _im2col_output;
313     CLTensor _weights_reshaped;
314     CLTensor _gemm_output;
315 
316     bool _skip_im2col;
317     bool _skip_col2im;
318     bool _is_quantized;
319     bool _fuse_activation;
320     bool _is_prepared;
321 };
322 } // namespace arm_compute
323 #endif /* ARM_COMPUTE_CLGEMMCONVOLUTIONLAYER_H */
324