• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H
25 #define ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
29 #include "arm_compute/runtime/CL/functions/CLConcatenateLayer.h"
30 #include "arm_compute/runtime/CL/functions/CLDequantizationLayer.h"
31 #include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
32 #include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
33 #include "arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h"
34 #include "arm_compute/runtime/CL/functions/CLPixelWiseMultiplication.h"
35 #include "arm_compute/runtime/CL/functions/CLQuantizationLayer.h"
36 #include "arm_compute/runtime/CL/functions/CLSlice.h"
37 #include "arm_compute/runtime/CL/functions/CLTranspose.h"
38 
39 #include "arm_compute/runtime/common/LSTMParams.h"
40 
41 namespace arm_compute
42 {
43 // Forward declarations
44 class ICLTensor;
45 
46 /** Basic function to run @ref CLLSTMLayerQuantized
47  *
48  * This function calls the following CL functions/kernels:
49  *
50  * -# @ref CLGEMMLowpMatrixMultiplyCore                          Quantized matrix multiplication core. Accumulators are 32-bit integers
51  * -# @ref CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint   Convert 32-bit integers into QSYMM16
52  * -# @ref CLTranspose                                           Matrix transpose
53  * -# @ref CLConcatenateLayer                                    Tensor concatenation
54  * -# @ref CLActivationLayer                                     Activation functions (tanh and logistic)
55  * -# @ref CLArithmeticAddition                                  Elementwise addition
56  * -# @ref CLPixelWiseMultiplication                             Elementwise multiplication
57  * -# @ref CLSlice                                               Tensor slicing
58  * -# @ref CLDequantizationLayer                                 Dequantize into float
59  * -# @ref CLQuantizationLayer                                   Quantize from float
60  * */
61 class CLLSTMLayerQuantized : public IFunction
62 {
63 public:
64     /** Default constructor */
65     CLLSTMLayerQuantized(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
66     /** Prevent instances of this class from being copied (As this class contains pointers) */
67     CLLSTMLayerQuantized(const CLLSTMLayerQuantized &) = delete;
68     /** Default move constructor */
69     CLLSTMLayerQuantized(CLLSTMLayerQuantized &&) = default;
70     /** Prevent instances of this class from being copied (As this class contains pointers) */
71     CLLSTMLayerQuantized &operator=(const CLLSTMLayerQuantized &) = delete;
72     /** Default move assignment operator */
73     CLLSTMLayerQuantized &operator=(CLLSTMLayerQuantized &&) = default;
74     /** Initialize function's tensors.
75      *
76      * @param[in]  input                       Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
77      * @param[in]  input_to_input_weights      2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
78      * @param[in]  input_to_forget_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
79      * @param[in]  input_to_cell_weights       2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
80      * @param[in]  input_to_output_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
81      * @param[in]  recurrent_to_input_weights  2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
82      * @param[in]  recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
83      * @param[in]  recurrent_to_cell_weights   2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
84      * @param[in]  recurrent_to_output_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
85      * @param[in]  input_gate_bias             1D weights tensor with dimensions [output_size]. Data type supported: S32.
86      * @param[in]  forget_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
87      * @param[in]  cell_bias                   1D weights tensor with dimensions [output_size]. Data type supported: S32.
88      * @param[in]  output_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
89      * @param[in]  cell_state_in               2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
90      * @param[in]  output_state_in             2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
91      * @param[out] cell_state_out              Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
92      * @param[out] output_state_out            Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
93      */
94     void configure(const ICLTensor *input,
95                    const ICLTensor *input_to_input_weights, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
96                    const ICLTensor *recurrent_to_input_weights, const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
97                    const ICLTensor *input_gate_bias, const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
98                    ICLTensor *cell_state_in, const ICLTensor *output_state_in,
99                    ICLTensor *cell_state_out, ICLTensor *output_state_out);
100     /** Initialize function's tensors.
101      *
102      * @param[in]  compile_context             The compile context to be used.
103      * @param[in]  input                       Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
104      * @param[in]  input_to_input_weights      2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
105      * @param[in]  input_to_forget_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
106      * @param[in]  input_to_cell_weights       2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
107      * @param[in]  input_to_output_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
108      * @param[in]  recurrent_to_input_weights  2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
109      * @param[in]  recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
110      * @param[in]  recurrent_to_cell_weights   2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
111      * @param[in]  recurrent_to_output_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
112      * @param[in]  input_gate_bias             1D weights tensor with dimensions [output_size]. Data type supported: S32.
113      * @param[in]  forget_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
114      * @param[in]  cell_bias                   1D weights tensor with dimensions [output_size]. Data type supported: S32.
115      * @param[in]  output_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
116      * @param[in]  cell_state_in               2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
117      * @param[in]  output_state_in             2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
118      * @param[out] cell_state_out              Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
119      * @param[out] output_state_out            Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
120      */
121     void configure(const CLCompileContext &compile_context, const ICLTensor *input,
122                    const ICLTensor *input_to_input_weights, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
123                    const ICLTensor *recurrent_to_input_weights, const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
124                    const ICLTensor *input_gate_bias, const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
125                    ICLTensor *cell_state_in, const ICLTensor *output_state_in,
126                    ICLTensor *cell_state_out, ICLTensor *output_state_out);
127 
128     /** Static function to check if given info will lead to a valid configuration of @ref CLLSTMLayerQuantized
129      *
130      * @param[in]  input                       Source tensor info. Input is a 2D tensor info with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
131      * @param[in]  input_to_input_weights      2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
132      * @param[in]  input_to_forget_weights     2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
133      * @param[in]  input_to_cell_weights       2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
134      * @param[in]  input_to_output_weights     2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
135      * @param[in]  recurrent_to_input_weights  2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
136      * @param[in]  recurrent_to_forget_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
137      * @param[in]  recurrent_to_cell_weights   2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
138      * @param[in]  recurrent_to_output_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
139      * @param[in]  input_gate_bias             1D weights tensor info with dimensions [output_size]. Data type supported: S32.
140      * @param[in]  forget_gate_bias            1D weights tensor info with dimensions [output_size]. Data type supported: S32.
141      * @param[in]  cell_bias                   1D weights tensor info with dimensions [output_size]. Data type supported: S32.
142      * @param[in]  output_gate_bias            1D weights tensor info with dimensions [output_size]. Data type supported: S32.
143      * @param[in]  cell_state_in               2D tensor info with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
144      * @param[in]  output_state_in             2D tensor info with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
145      * @param[out] cell_state_out              Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
146      * @param[out] output_state_out            Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size].Data types supported: Same as @p input.
147      *
148      * @return a status
149      */
150     static Status validate(const ITensorInfo *input,
151                            const ITensorInfo *input_to_input_weights, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
152                            const ITensorInfo *recurrent_to_input_weights, const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
153                            const ITensorInfo *input_gate_bias, const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
154                            const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
155                            const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out);
156 
157     // Inherited methods overridden:
158     void run() override;
159     void prepare() override;
160 
161 private:
162     MemoryGroup _memory_group;
163 
164     // Functions used
165     CLGEMMLowpMatrixMultiplyCore                        _gemmlowp;
166     CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint _output_stage;
167     CLTranspose                                         _transpose_weights;
168     CLConcatenateLayer                                  _concat_input_weights;
169     CLConcatenateLayer                                  _concat_recurrent_weights;
170     CLConcatenateLayer                                  _concat_weights;
171     CLConcatenateLayer                                  _concat_inputs;
172     CLConcatenateLayer                                  _concat_bias;
173     CLActivationLayer                                   _sigmoid_forget_gate;
174     CLActivationLayer                                   _sigmoid_input_gate;
175     CLActivationLayer                                   _sigmoid_output_gate;
176     CLActivationLayer                                   _tanh_modulation_gate;
177     CLActivationLayer                                   _tanh_output_state;
178     CLArithmeticAddition                                _add_cell_state_tmps;
179     CLArithmeticAddition                                _add2;
180     CLPixelWiseMultiplication                           _mul_forget_gate_cell_state;
181     CLPixelWiseMultiplication                           _mul_input_gate_input_mod_gate;
182     CLPixelWiseMultiplication                           _mul_output_state_tmp_output_gate;
183     CLSlice                                             _slice_input_tensor;
184     CLSlice                                             _slice_forget_tensor;
185     CLSlice                                             _slice_cell_tensor;
186     CLSlice                                             _slice_output_tensor;
187     CLDequantizationLayer                               _dequantize;
188     CLQuantizationLayer                                 _quantize;
189 
190     // Tensor pointers
191     const ICLTensor *_input_to_input_weights;
192     const ICLTensor *_input_to_forget_weights;
193     const ICLTensor *_input_to_cell_weights;
194     const ICLTensor *_input_to_output_weights;
195     const ICLTensor *_recurrent_to_input_weights;
196     const ICLTensor *_recurrent_to_forget_weights;
197     const ICLTensor *_recurrent_to_cell_weights;
198     const ICLTensor *_recurrent_to_output_weights;
199     const ICLTensor *_input_gate_bias;
200     const ICLTensor *_forget_gate_bias;
201     const ICLTensor *_cell_bias;
202     const ICLTensor *_output_gate_bias;
203 
204     // Temporary tensors
205     CLTensor _recurrent_weights;
206     CLTensor _input_weights;
207     CLTensor _weights;
208     CLTensor _input;
209     CLTensor _weights_transposed;
210     CLTensor _output_highp;
211     CLTensor _output_lowp;
212     CLTensor _bias;
213     CLTensor _forget_gate_input;
214     CLTensor _input_gate_input;
215     CLTensor _output_gate_input;
216     CLTensor _input_modulation_gate_input;
217     CLTensor _forget_gate_output;
218     CLTensor _input_gate_output;
219     CLTensor _output_gate_output;
220     CLTensor _input_modulation_gate_output;
221     CLTensor _cell_state_tmp1;
222     CLTensor _cell_state_tmp2;
223     CLTensor _output_state_tmp;
224     CLTensor _output_state_out_symm;
225     CLTensor _output_state_out_f32;
226 
227     bool _is_prepared;
228 };
229 } // namespace arm_compute
230 #endif /* ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H */
231