• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CLWINOGRADCONVOLUTIONLAYER_H
25 #define ARM_COMPUTE_CLWINOGRADCONVOLUTIONLAYER_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/runtime/CL/functions/CLGEMM.h"
29 #include "arm_compute/runtime/CL/functions/CLWinogradInputTransform.h"
30 #include "arm_compute/runtime/IFunction.h"
31 
32 namespace arm_compute
33 {
34 class CLCompileContext;
35 class CLWinogradFilterTransformKernel;
36 class CLWinogradOutputTransformKernel;
37 class ICLTensor;
38 class ITensorInfo;
39 
40 /** Basic function to execute Winograd-based convolution on OpenCL. This function calls the following OpenCL functions/kernels:
41  *
42  *  -# @ref CLWinogradInputTransform
43  *  -# @ref CLWinogradFilterTransformKernel (only once)
44  *  -# @ref CLGEMM
45  *  -# @ref CLWinogradOutputTransformKernel
46  *
47  */
48 class CLWinogradConvolutionLayer : public IFunction
49 {
50 public:
51     /** Default constructor */
52     CLWinogradConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
53     /** Prevent instances of this class from being copied (As this class contains pointers) */
54     CLWinogradConvolutionLayer(const CLWinogradConvolutionLayer &) = delete;
55     /** Default move constructor */
56     CLWinogradConvolutionLayer(CLWinogradConvolutionLayer &&) = default;
57     /** Prevent instances of this class from being copied (As this class contains pointers) */
58     CLWinogradConvolutionLayer &operator=(const CLWinogradConvolutionLayer &) = delete;
59     /** Default move assignment operator */
60     CLWinogradConvolutionLayer &operator=(CLWinogradConvolutionLayer &&) = default;
61     /** Default destructor */
62     ~CLWinogradConvolutionLayer();
63     /** Set the input and output tensors.
64      *
65      * @note: This function only works with 3x3,3x1,1x3,5x5,5x1,1x5,7x1 and 1x7 kernels along with unit strides for both NCHW and NHWC data layout
66      * @note  Some Winograd configurations (i.e. F(4x4, 5x5)) are supported only with enable_fast_math = true
67      *
68      * @param[in]  input            Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
69      *                              while every optional dimension from 4 and above represent a batch of inputs.
70      *                              Data types supported: F16/F32.
71      * @param[in]  weights          Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input.
72      * @param[in]  biases           Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].Data type supported: Same as @p input
73      * @param[out] output           Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
74      *                              Data types supported: Same as @p input.
75      * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo.
76      * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation.
77      * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
78      *                              available which may introduce a drop of accuracy as well. Default is false
79      */
80     void configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
81                    const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false);
82     /** Set the input and output tensors.
83      *
84      * @note: This function only works with 3x3,3x1,1x3,5x5,5x1,1x5,7x1 and 1x7 kernels along with unit strides for both NCHW and NHWC data layout
85      * @note  Some Winograd configurations (i.e. F(4x4, 5x5)) are supported only with enable_fast_math = true
86      *
87      * @param[in]  compile_context  The compile context to be used.
88      * @param[in]  input            Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
89      *                              while every optional dimension from 4 and above represent a batch of inputs.
90      *                              Data types supported: F16/F32.
91      * @param[in]  weights          Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input.
92      * @param[in]  biases           Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].Data type supported: Same as @p input
93      * @param[out] output           Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
94      *                              Data types supported: Same as @p input.
95      * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo.
96      * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation.
97      * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
98      *                              available which may introduce a drop of accuracy as well. Default is false
99      */
100     void configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
101                    const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false);
102     /** Static function to check if given info will lead to a valid configuration of @ref CLWinogradConvolutionLayer
103      *
104      * @note: This function only works with 3x3,3x1,1x3,5x5,5x1 and 1x5 kernels along with unit strides for both NCHW and NHWC data layout
105      * @note  Some Winograd configurations (i.e. F(4x4, 5x5)) are supported only with enable_fast_math = true
106      *
107      * @param[in]  input            Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
108      *                              while every optional dimension from 4 and above represent a batch of inputs.
109      *                              Data types supported: F16/F32.
110      * @param[in]  weights          Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input.
111      * @param[in]  biases           Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].Data type supported: Same as @p input
112      * @param[out] output           Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
113      *                              Data types supported: Same as @p input.
114      * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo.
115      * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation.
116      * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
117      *                              available which may introduce a drop of accuracy as well. Default is false
118      *
119      * @return a status
120      */
121     static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
122                            const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false);
123 
124     // Inherited methods overridden:
125     void run() override;
126     void prepare() override;
127 
128 private:
129     MemoryGroup                                      _memory_group;
130     CLGEMM                                           _batched_mm;
131     CLWinogradInputTransform                         _input_transform;
132     std::unique_ptr<CLWinogradFilterTransformKernel> _filter_transform;
133     std::unique_ptr<CLWinogradOutputTransformKernel> _output_transform;
134     CLTensor                                         _input0;
135     CLTensor                                         _input1;
136     CLTensor                                         _batched_mm_output;
137     const ICLTensor                                 *_original_weights;
138     bool                                             _is_prepared;
139 };
140 } // namespace arm_compute
141 #endif /* ARM_COMPUTE_CLWINOGRADCONVOLUTIONLAYER_H */
142