• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NELSTMLAYERQUANTIZED_H
25 #define ARM_COMPUTE_NELSTMLAYERQUANTIZED_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/runtime/NEON/functions/NEActivationLayer.h"
29 #include "arm_compute/runtime/NEON/functions/NEArithmeticAddition.h"
30 #include "arm_compute/runtime/NEON/functions/NEConcatenateLayer.h"
31 #include "arm_compute/runtime/NEON/functions/NEDequantizationLayer.h"
32 #include "arm_compute/runtime/NEON/functions/NEElementwiseOperations.h"
33 #include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
34 #include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h"
35 #include "arm_compute/runtime/NEON/functions/NEGEMMLowpOutputStage.h"
36 #include "arm_compute/runtime/NEON/functions/NEPixelWiseMultiplication.h"
37 #include "arm_compute/runtime/NEON/functions/NEQuantizationLayer.h"
38 #include "arm_compute/runtime/NEON/functions/NESlice.h"
39 #include "arm_compute/runtime/NEON/functions/NETranspose.h"
40 
41 #include "arm_compute/runtime/common/LSTMParams.h"
42 
43 namespace arm_compute
44 {
45 // Forward declarations
46 class ITensor;
47 
48 /** Basic function to run @ref NELSTMLayerQuantized
49  *
50  * This function calls the following NEON functions/kernels:
51  *
52  * -# @ref NEGEMMLowpMatrixMultiplyCore                          Quantized matrix multiplication core. Accumulators are 32-bit integers
53  * -# @ref NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint   Convert 32-bit integers into QSYMM16
54  * -# @ref NETranspose                                           Matrix transpose
55  * -# @ref NEConcatenateLayer                                    Tensor concatenation
56  * -# @ref NEActivationLayer                                     Activation functions (tanh and logistic)
57  * -# @ref NEArithmeticAddition                                  Elementwise addition
58  * -# @ref NEPixelWiseMultiplication                             Elementwise multiplication
59  * -# @ref NESlice                                               Tensor slicing
60  * -# @ref NEDequantizationLayer                                 Dequantize into float
61  * -# @ref NEQuantizationLayer                                   Quantize from float
62  * */
63 class NELSTMLayerQuantized : public IFunction
64 {
65 public:
66     /** Default constructor */
67     NELSTMLayerQuantized(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
68     /** Prevent instances of this class from being copied (As this class contains pointers) */
69     NELSTMLayerQuantized(const NELSTMLayerQuantized &) = delete;
70     /** Prevent instances of this class from being moved (As this class contains pointers) */
71     NELSTMLayerQuantized(NELSTMLayerQuantized &&) = delete;
72     /** Prevent instances of this class from being copied (As this class contains pointers) */
73     NELSTMLayerQuantized &operator=(const NELSTMLayerQuantized &) = delete;
74     /** Prevent instances of this class from being moved (As this class contains pointers) */
75     NELSTMLayerQuantized &operator=(NELSTMLayerQuantized &&) = delete;
76     /** Default destructor */
77     ~NELSTMLayerQuantized();
78     /** Initialize function's tensors.
79      *
80      * @param[in]  input                       Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
81      * @param[in]  input_to_input_weights      2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
82      * @param[in]  input_to_forget_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
83      * @param[in]  input_to_cell_weights       2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
84      * @param[in]  input_to_output_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
85      * @param[in]  recurrent_to_input_weights  2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
86      * @param[in]  recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
87      * @param[in]  recurrent_to_cell_weights   2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
88      * @param[in]  recurrent_to_output_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
89      * @param[in]  input_gate_bias             1D weights tensor with dimensions [output_size]. Data type supported: S32.
90      * @param[in]  forget_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
91      * @param[in]  cell_bias                   1D weights tensor with dimensions [output_size]. Data type supported: S32.
92      * @param[in]  output_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
93      * @param[in]  cell_state_in               2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
94      * @param[in]  output_state_in             2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
95      * @param[out] cell_state_out              Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
96      * @param[out] output_state_out            Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
97      */
98     void configure(const ITensor *input,
99                    const ITensor *input_to_input_weights, const ITensor *input_to_forget_weights, const ITensor *input_to_cell_weights, const ITensor *input_to_output_weights,
100                    const ITensor *recurrent_to_input_weights, const ITensor *recurrent_to_forget_weights, const ITensor *recurrent_to_cell_weights, const ITensor *recurrent_to_output_weights,
101                    const ITensor *input_gate_bias, const ITensor *forget_gate_bias, const ITensor *cell_bias, const ITensor *output_gate_bias,
102                    ITensor *cell_state_in, const ITensor *output_state_in,
103                    ITensor *cell_state_out, ITensor *output_state_out);
104 
105     /** Static function to check if given info will lead to a valid configuration of @ref NELSTMLayer
106      *
107      * @param[in]  input                       Source tensor info. Input is a 2D tensor info with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
108      * @param[in]  input_to_input_weights      2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
109      * @param[in]  input_to_forget_weights     2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
110      * @param[in]  input_to_cell_weights       2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
111      * @param[in]  input_to_output_weights     2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
112      * @param[in]  recurrent_to_input_weights  2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
113      * @param[in]  recurrent_to_forget_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
114      * @param[in]  recurrent_to_cell_weights   2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
115      * @param[in]  recurrent_to_output_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
116      * @param[in]  input_gate_bias             1D weights tensor info with dimensions [output_size]. Data type supported: S32.
117      * @param[in]  forget_gate_bias            1D weights tensor info with dimensions [output_size]. Data type supported: S32.
118      * @param[in]  cell_bias                   1D weights tensor info with dimensions [output_size]. Data type supported: S32.
119      * @param[in]  output_gate_bias            1D weights tensor info with dimensions [output_size]. Data type supported: S32.
120      * @param[in]  cell_state_in               2D tensor info with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
121      * @param[in]  output_state_in             2D tensor info with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
122      * @param[out] cell_state_out              Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
123      * @param[out] output_state_out            Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size].Data types supported: Same as @p input.
124      *
125      * @return a status
126      */
127     static Status validate(const ITensorInfo *input,
128                            const ITensorInfo *input_to_input_weights, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
129                            const ITensorInfo *recurrent_to_input_weights, const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
130                            const ITensorInfo *input_gate_bias, const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
131                            const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
132                            const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out);
133 
134     // Inherited methods overridden:
135     void run() override;
136     void prepare() override;
137 
138 private:
139     MemoryGroup _memory_group;
140 
141     // Functions used
142     NEGEMMLowpMatrixMultiplyCore                        _gemmlowp;
143     NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPoint _output_stage;
144     NETranspose                                         _transpose_weights;
145     NEConcatenateLayer                                  _concat_input_weights;
146     NEConcatenateLayer                                  _concat_recurrent_weights;
147     NEConcatenateLayer                                  _concat_weights;
148     NEConcatenateLayer                                  _concat_inputs;
149     NEConcatenateLayer                                  _concat_bias;
150     NEActivationLayer                                   _sigmoid_forget_gate;
151     NEActivationLayer                                   _sigmoid_input_gate;
152     NEActivationLayer                                   _sigmoid_output_gate;
153     NEActivationLayer                                   _tanh_modulation_gate;
154     NEActivationLayer                                   _tanh_output_state;
155     NEArithmeticAddition                                _add1;
156     NEArithmeticAddition                                _add2;
157     NEPixelWiseMultiplication                           _mul1;
158     NEPixelWiseMultiplication                           _mul2;
159     NEPixelWiseMultiplication                           _mul3;
160     NESlice                                             _slice_input_tensor;
161     NESlice                                             _slice_forget_tensor;
162     NESlice                                             _slice_cell_tensor;
163     NESlice                                             _slice_output_tensor;
164     NEDequantizationLayer                               _dequantize;
165     NEQuantizationLayer                                 _quantize;
166 
167     // Tensor pointers
168     const ITensor *_input_to_input_weights;
169     const ITensor *_input_to_forget_weights;
170     const ITensor *_input_to_cell_weights;
171     const ITensor *_input_to_output_weights;
172     const ITensor *_recurrent_to_input_weights;
173     const ITensor *_recurrent_to_forget_weights;
174     const ITensor *_recurrent_to_cell_weights;
175     const ITensor *_recurrent_to_output_weights;
176     const ITensor *_input_gate_bias;
177     const ITensor *_forget_gate_bias;
178     const ITensor *_cell_bias;
179     const ITensor *_output_gate_bias;
180 
181     // Temporary tensors
182     Tensor _recurrent_weights;
183     Tensor _input_weights;
184     Tensor _weights;
185     Tensor _input;
186     Tensor _weights_transposed;
187     Tensor _output_highp;
188     Tensor _output_lowp;
189     Tensor _bias;
190     Tensor _forget_gate_input;
191     Tensor _input_gate_input;
192     Tensor _output_gate_input;
193     Tensor _input_modulation_gate_input;
194     Tensor _forget_gate_output;
195     Tensor _input_gate_output;
196     Tensor _output_gate_output;
197     Tensor _input_modulation_gate_output;
198     Tensor _cell_state1;
199     Tensor _cell_state2;
200     Tensor _output_state_tmp;
201     Tensor _output_state_out_symm;
202     Tensor _output_state_out_f32;
203 
204     bool _is_prepared;
205 };
206 } // namespace arm_compute
207 #endif /* ARM_COMPUTE_NELSTMLAYERQUANTIZED_H */
208