• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute;
31 using namespace arm_compute::utils;
32 using namespace arm_compute::graph::frontend;
33 using namespace arm_compute::graph_utils;
34 
35 /** Example demonstrating how to implement MobileNetV2's network using the Compute Library's graph API */
36 class GraphMobilenetV2Example : public Example
37 {
38 public:
GraphMobilenetV2Example()39     GraphMobilenetV2Example()
40         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "MobileNetV2")
41     {
42     }
43     GraphMobilenetV2Example(const GraphMobilenetV2Example &) = delete;
44     GraphMobilenetV2Example &operator=(const GraphMobilenetV2Example &) = delete;
45     ~GraphMobilenetV2Example() override                                 = default;
46 
do_setup(int argc,char ** argv)47     bool do_setup(int argc, char **argv) override
48     {
49         // Parse arguments
50         cmd_parser.parse(argc, argv);
51         cmd_parser.validate();
52 
53         // Consume common parameters
54         common_params = consume_common_graph_parameters(common_opts);
55 
56         // Return when help menu is requested
57         if(common_params.help)
58         {
59             cmd_parser.print_help(argv[0]);
60             return false;
61         }
62 
63         // Print parameter values
64         std::cout << common_params << std::endl;
65 
66         // Create input descriptor
67         const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
68         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
69 
70         // Set graph hints
71         graph << common_params.target
72               << common_params.fast_math_hint;
73 
74         // Create core graph
75         if(arm_compute::is_data_type_float(common_params.data_type))
76         {
77             create_graph_float(input_descriptor);
78         }
79         else
80         {
81             create_graph_qasymm8(input_descriptor);
82         }
83         // Create common tail
84         graph << ReshapeLayer(TensorShape(1001U)).set_name("Predictions/Reshape")
85               << SoftmaxLayer().set_name("Predictions/Softmax")
86               << OutputLayer(get_output_accessor(common_params, 5));
87 
88         // Finalize graph
89         GraphConfig config;
90         config.num_threads = common_params.threads;
91         config.use_tuner   = common_params.enable_tuner;
92         config.tuner_mode  = common_params.tuner_mode;
93         config.tuner_file  = common_params.tuner_file;
94 
95         graph.finalize(common_params.target, config);
96 
97         return true;
98     }
99 
do_run()100     void do_run() override
101     {
102         // Run graph
103         graph.run();
104     }
105 
106 private:
107     CommandLineParser  cmd_parser;
108     CommonGraphOptions common_opts;
109     CommonGraphParams  common_params;
110     Stream             graph;
111 
112 private:
113     enum class IsResidual
114     {
115         Yes,
116         No
117     };
118 
119     enum class HasExpand
120     {
121         Yes,
122         No
123     };
124 
125 private:
create_graph_float(TensorDescriptor & input_descriptor)126     void create_graph_float(TensorDescriptor &input_descriptor)
127     {
128         // Create model path
129         const std::string model_path = "/cnn_data/mobilenet_v2_1.0_224_model/";
130 
131         // Create a preprocessor object
132         std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<TFPreproccessor>();
133 
134         // Get trainable parameters data path
135         std::string data_path = common_params.data_path;
136 
137         // Add model path to data path
138         if(!data_path.empty())
139         {
140             data_path += model_path;
141         }
142 
143         graph << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false))
144               << ConvolutionLayer(3U, 3U, 32U,
145                                   get_weights_accessor(data_path, "Conv_weights.npy", DataLayout::NCHW),
146                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
147                                   PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL))
148               .set_name("Conv")
149               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv_BatchNorm_moving_mean.npy"),
150                                          get_weights_accessor(data_path, "Conv_BatchNorm_moving_variance.npy"),
151                                          get_weights_accessor(data_path, "Conv_BatchNorm_gamma.npy"),
152                                          get_weights_accessor(data_path, "Conv_BatchNorm_beta.npy"),
153                                          0.0010000000474974513f)
154               .set_name("Conv/BatchNorm")
155               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))
156               .set_name("Conv/Relu6");
157 
158         get_expanded_conv_float(data_path, "expanded_conv", 32U, 16U, PadStrideInfo(1, 1, 1, 1));
159         get_expanded_conv_float(data_path, "expanded_conv_1", 16U, 24U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL), HasExpand::Yes);
160         get_expanded_conv_float(data_path, "expanded_conv_2", 24U, 24U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
161         get_expanded_conv_float(data_path, "expanded_conv_3", 24U, 32U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL), HasExpand::Yes);
162         get_expanded_conv_float(data_path, "expanded_conv_4", 32U, 32U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
163         get_expanded_conv_float(data_path, "expanded_conv_5", 32U, 32U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
164         get_expanded_conv_float(data_path, "expanded_conv_6", 32U, 64U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL), HasExpand::Yes);
165         get_expanded_conv_float(data_path, "expanded_conv_7", 64U, 64U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
166         get_expanded_conv_float(data_path, "expanded_conv_8", 64U, 64U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
167         get_expanded_conv_float(data_path, "expanded_conv_9", 64U, 64U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
168         get_expanded_conv_float(data_path, "expanded_conv_10", 64U, 96U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes);
169         get_expanded_conv_float(data_path, "expanded_conv_11", 96U, 96U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
170         get_expanded_conv_float(data_path, "expanded_conv_12", 96U, 96U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
171         get_expanded_conv_float(data_path, "expanded_conv_13", 96U, 160U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL), HasExpand::Yes);
172         get_expanded_conv_float(data_path, "expanded_conv_14", 160U, 160U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
173         get_expanded_conv_float(data_path, "expanded_conv_15", 160U, 160U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
174         get_expanded_conv_float(data_path, "expanded_conv_16", 160U, 320U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes);
175 
176         graph << ConvolutionLayer(1U, 1U, 1280U,
177                                   get_weights_accessor(data_path, "Conv_1_weights.npy", DataLayout::NCHW),
178                                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
179                                   PadStrideInfo(1, 1, 0, 0))
180               .set_name("Conv_1")
181               << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv_1_BatchNorm_moving_mean.npy"),
182                                          get_weights_accessor(data_path, "Conv_1_BatchNorm_moving_variance.npy"),
183                                          get_weights_accessor(data_path, "Conv_1_BatchNorm_gamma.npy"),
184                                          get_weights_accessor(data_path, "Conv_1_BatchNorm_beta.npy"),
185                                          0.0010000000474974513f)
186               .set_name("Conv_1/BatchNorm")
187               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))
188               .set_name("Conv_1/Relu6")
189               << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, common_params.data_layout)).set_name("Logits/AvgPool")
190               << ConvolutionLayer(1U, 1U, 1001U,
191                                   get_weights_accessor(data_path, "Logits_Conv2d_1c_1x1_weights.npy", DataLayout::NCHW),
192                                   get_weights_accessor(data_path, "Logits_Conv2d_1c_1x1_biases.npy"),
193                                   PadStrideInfo(1, 1, 0, 0))
194               .set_name("Logits/Conv2d_1c_1x1");
195     }
196 
get_expanded_conv_float(const std::string & data_path,std::string && param_path,unsigned int input_channels,unsigned int output_channels,PadStrideInfo dwc_pad_stride_info,HasExpand has_expand=HasExpand::No,IsResidual is_residual=IsResidual::No,unsigned int expansion_size=6)197     void get_expanded_conv_float(const std::string &data_path, std::string &&param_path,
198                                  unsigned int input_channels, unsigned int output_channels,
199                                  PadStrideInfo dwc_pad_stride_info,
200                                  HasExpand has_expand = HasExpand::No, IsResidual is_residual = IsResidual::No,
201                                  unsigned int expansion_size = 6)
202     {
203         std::string total_path = param_path + "_";
204         SubStream   left(graph);
205 
206         // Add expand node
207         if(has_expand == HasExpand::Yes)
208         {
209             left << ConvolutionLayer(1U, 1U, input_channels * expansion_size,
210                                      get_weights_accessor(data_path, total_path + "expand_weights.npy", DataLayout::NCHW),
211                                      std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
212                  .set_name(param_path + "/expand/Conv2D")
213                  << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "expand_BatchNorm_moving_mean.npy"),
214                                             get_weights_accessor(data_path, total_path + "expand_BatchNorm_moving_variance.npy"),
215                                             get_weights_accessor(data_path, total_path + "expand_BatchNorm_gamma.npy"),
216                                             get_weights_accessor(data_path, total_path + "expand_BatchNorm_beta.npy"),
217                                             0.0010000000474974513f)
218                  .set_name(param_path + "/expand/BatchNorm")
219                  << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))
220                  .set_name(param_path + "/expand/Relu6");
221         }
222 
223         // Add depthwise node
224         left << DepthwiseConvolutionLayer(3U, 3U,
225                                           get_weights_accessor(data_path, total_path + "depthwise_depthwise_weights.npy", DataLayout::NCHW),
226                                           std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
227                                           dwc_pad_stride_info)
228              .set_name(param_path + "/depthwise/depthwise")
229              << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "depthwise_BatchNorm_moving_mean.npy"),
230                                         get_weights_accessor(data_path, total_path + "depthwise_BatchNorm_moving_variance.npy"),
231                                         get_weights_accessor(data_path, total_path + "depthwise_BatchNorm_gamma.npy"),
232                                         get_weights_accessor(data_path, total_path + "depthwise_BatchNorm_beta.npy"),
233                                         0.0010000000474974513f)
234              .set_name(param_path + "/depthwise/BatchNorm")
235              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))
236              .set_name(param_path + "/depthwise/Relu6");
237 
238         // Add project node
239         left << ConvolutionLayer(1U, 1U, output_channels,
240                                  get_weights_accessor(data_path, total_path + "project_weights.npy", DataLayout::NCHW),
241                                  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
242              .set_name(param_path + "/project/Conv2D")
243              << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "project_BatchNorm_moving_mean.npy"),
244                                         get_weights_accessor(data_path, total_path + "project_BatchNorm_moving_variance.npy"),
245                                         get_weights_accessor(data_path, total_path + "project_BatchNorm_gamma.npy"),
246                                         get_weights_accessor(data_path, total_path + "project_BatchNorm_beta.npy"),
247                                         0.0010000000474974513)
248              .set_name(param_path + "/project/BatchNorm");
249 
250         if(is_residual == IsResidual::Yes)
251         {
252             // Add residual node
253             SubStream right(graph);
254             graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(param_path + "/add");
255         }
256         else
257         {
258             graph.forward_tail(left.tail_node());
259         }
260     }
261 
create_graph_qasymm8(TensorDescriptor & input_descriptor)262     void create_graph_qasymm8(TensorDescriptor &input_descriptor)
263     {
264         // Create model path
265         const std::string model_path = "/cnn_data/mobilenet_v2_1.0_224_quantized_model/";
266 
267         // Get trainable parameters data path
268         std::string data_path = common_params.data_path;
269 
270         // Add model path to data path
271         if(!data_path.empty())
272         {
273             data_path += model_path;
274         }
275 
276         const QuantizationInfo in_quant_info  = QuantizationInfo(0.0078125f, 128);
277         const QuantizationInfo mid_quant_info = QuantizationInfo(0.023528477177023888f, 128);
278 
279         const std::vector<QuantizationInfo> conv_weights_quant_info =
280         {
281             QuantizationInfo(0.03396892547607422f, 122),  // Conv
282             QuantizationInfo(0.005167067516595125f, 125), // Conv1
283             QuantizationInfo(0.0016910821432247758f, 113) // Conv2d_1c_1x1
284         };
285 
286         // Pointwise expand convolution quantization info
287         const std::vector<QuantizationInfo> pwc_q =
288         {
289             QuantizationInfo(0.254282623529f, 129),        // expand_0 (Dummy)
290             QuantizationInfo(0.009758507832884789f, 127),  // expand_1
291             QuantizationInfo(0.0036556976847350597f, 144), // expand_2
292             QuantizationInfo(0.0029988749884068966f, 104), // expand_3
293             QuantizationInfo(0.0019244228024035692f, 128), // expand_4
294             QuantizationInfo(0.0013649158645421267f, 135), // expand_5
295             QuantizationInfo(0.0019170437008142471f, 127), // expand_6
296             QuantizationInfo(0.0015538912266492844f, 125), // expand_7
297             QuantizationInfo(0.0014702979242429137f, 134), // expand_8
298             QuantizationInfo(0.0013733493397012353f, 127), // expand_9
299             QuantizationInfo(0.0016282502328976989f, 131), // expand_10
300             QuantizationInfo(0.0016309921629726887f, 134), // expand_11
301             QuantizationInfo(0.0018258779309689999f, 138), // expand_12
302             QuantizationInfo(0.0013828007504343987f, 123), // expand_13
303             QuantizationInfo(0.0020222084131091833f, 135), // expand_14
304             QuantizationInfo(0.04281935095787048f, 102),   // expand_15
305             QuantizationInfo(0.002046825597062707f, 135)   // expand_16
306         };
307         // Depthwise expand convolution quantization info
308         const std::vector<QuantizationInfo> dwc_q =
309         {
310             QuantizationInfo(0.3436955213546753f, 165),   // expand_0
311             QuantizationInfo(0.020969120785593987f, 109), // expand_1
312             QuantizationInfo(0.16981913149356842f, 52),   // expand_2
313             QuantizationInfo(0.017202870920300484f, 143), // expand_3
314             QuantizationInfo(0.06525065749883652f, 118),  // expand_4
315             QuantizationInfo(0.07909784466028214f, 95),   // expand_5
316             QuantizationInfo(0.010087885893881321f, 127), // expand_6
317             QuantizationInfo(0.06092711538076401f, 110),  // expand_7
318             QuantizationInfo(0.052407849580049515f, 133), // expand_8
319             QuantizationInfo(0.04077887907624245f, 155),  // expand_9
320             QuantizationInfo(0.031107846647500992f, 143), // expand_10
321             QuantizationInfo(0.07080810517072678f, 66),   // expand_11
322             QuantizationInfo(0.07448793947696686f, 159),  // expand_12
323             QuantizationInfo(0.01525793131440878f, 92),   // expand_13
324             QuantizationInfo(0.04166752099990845f, 147),  // expand_14
325             QuantizationInfo(0.04281935095787048f, 102),  // expand_15
326             QuantizationInfo(0.16456253826618195, 201)    // expand_16
327         };
328         // Project convolution quantization info
329         const std::vector<QuantizationInfo> prwc_q =
330         {
331             QuantizationInfo(0.03737175464630127f, 140),  // expand_0
332             QuantizationInfo(0.0225360207259655f, 156),   // expand_1
333             QuantizationInfo(0.02740888111293316f, 122),  // expand_2
334             QuantizationInfo(0.016844693571329117f, 111), // expand_3
335             QuantizationInfo(0.019062912091612816f, 146), // expand_4
336             QuantizationInfo(0.018293123692274094f, 128), // expand_5
337             QuantizationInfo(0.014601286500692368f, 147), // expand_6
338             QuantizationInfo(0.016782939434051514f, 124), // expand_7
339             QuantizationInfo(0.012898261658847332f, 125), // expand_8
340             QuantizationInfo(0.019561484456062317f, 144), // expand_9
341             QuantizationInfo(0.007436311338096857f, 129), // expand_10
342             QuantizationInfo(0.00838223285973072f, 136),  // expand_11
343             QuantizationInfo(0.023982593789696693f, 154), // expand_12
344             QuantizationInfo(0.009447949007153511f, 140), // expand_13
345             QuantizationInfo(0.00789870135486126f, 139),  // expand_14
346             QuantizationInfo(0.03697410225868225f, 131),  // expand_15
347             QuantizationInfo(0.008009289391338825f, 111)  // expand_16
348         };
349 
350         graph << InputLayer(input_descriptor.set_quantization_info(in_quant_info),
351                             get_weights_accessor(data_path, common_params.image))
352               << ConvolutionLayer(
353                   3U, 3U, 32U,
354                   get_weights_accessor(data_path, "Conv_weights.npy"),
355                   get_weights_accessor(data_path, "Conv_bias.npy"),
356                   PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::FLOOR),
357                   1, conv_weights_quant_info.at(0), mid_quant_info)
358               .set_name("Conv")
359               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name("Conv/Relu6")
360               << DepthwiseConvolutionLayer(3U, 3U,
361                                            get_weights_accessor(data_path, "expanded_conv_depthwise_depthwise_weights.npy"),
362                                            get_weights_accessor(data_path, "expanded_conv_depthwise_depthwise_biases.npy"),
363                                            PadStrideInfo(1, 1, 1, 1), 1, dwc_q.at(0))
364               .set_name("expanded_conv/depthwise/depthwise")
365               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name("expanded_conv/depthwise/Relu6")
366               << ConvolutionLayer(1U, 1U, 16U,
367                                   get_weights_accessor(data_path, "expanded_conv_project_weights.npy"),
368                                   get_weights_accessor(data_path, "expanded_conv_project_biases.npy"),
369                                   PadStrideInfo(1, 1, 0, 0), 1, prwc_q.at(0))
370               .set_name("expanded_conv/project/Conv2D");
371 
372         get_expanded_conv_qasymm8(data_path, "expanded_conv_1", IsResidual::No, 96U, 24U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL),
373                                   pwc_q.at(1), dwc_q.at(1), prwc_q.at(1));
374         get_expanded_conv_qasymm8(data_path, "expanded_conv_2", IsResidual::Yes, 144U, 24U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(2), dwc_q.at(2), prwc_q.at(2));
375         get_expanded_conv_qasymm8(data_path, "expanded_conv_3", IsResidual::No, 144U, 32U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL),
376                                   pwc_q.at(3), dwc_q.at(3), prwc_q.at(3));
377         get_expanded_conv_qasymm8(data_path, "expanded_conv_4", IsResidual::Yes, 192U, 32U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(4), dwc_q.at(4), prwc_q.at(4));
378         get_expanded_conv_qasymm8(data_path, "expanded_conv_5", IsResidual::Yes, 192U, 32U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(5), dwc_q.at(5), prwc_q.at(5));
379         get_expanded_conv_qasymm8(data_path, "expanded_conv_6", IsResidual::No, 192U, 64U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL),
380                                   pwc_q.at(6), dwc_q.at(6), prwc_q.at(6));
381         get_expanded_conv_qasymm8(data_path, "expanded_conv_7", IsResidual::Yes, 384U, 64U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(7), dwc_q.at(7), prwc_q.at(7));
382         get_expanded_conv_qasymm8(data_path, "expanded_conv_8", IsResidual::Yes, 384U, 64U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(8), dwc_q.at(8), prwc_q.at(8));
383         get_expanded_conv_qasymm8(data_path, "expanded_conv_9", IsResidual::Yes, 384U, 64U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(9), dwc_q.at(9), prwc_q.at(9));
384         get_expanded_conv_qasymm8(data_path, "expanded_conv_10", IsResidual::No, 384U, 96U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(10), dwc_q.at(10), prwc_q.at(10));
385         get_expanded_conv_qasymm8(data_path, "expanded_conv_11", IsResidual::Yes, 576U, 96U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(11), dwc_q.at(11), prwc_q.at(11));
386         get_expanded_conv_qasymm8(data_path, "expanded_conv_12", IsResidual::Yes, 576U, 96U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(12), dwc_q.at(12), prwc_q.at(12));
387         get_expanded_conv_qasymm8(data_path, "expanded_conv_13", IsResidual::No, 576U, 160U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL),
388                                   pwc_q.at(13), dwc_q.at(13), prwc_q.at(13));
389         get_expanded_conv_qasymm8(data_path, "expanded_conv_14", IsResidual::Yes, 960U, 160U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(14), dwc_q.at(14), prwc_q.at(14));
390         get_expanded_conv_qasymm8(data_path, "expanded_conv_15", IsResidual::Yes, 960U, 160U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(15), dwc_q.at(15), prwc_q.at(15));
391         get_expanded_conv_qasymm8(data_path, "expanded_conv_16", IsResidual::No, 960U, 320U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(16), dwc_q.at(16), prwc_q.at(16));
392 
393         graph << ConvolutionLayer(1U, 1U, 1280U,
394                                   get_weights_accessor(data_path, "Conv_1_weights.npy"),
395                                   get_weights_accessor(data_path, "Conv_1_biases.npy"),
396                                   PadStrideInfo(1, 1, 0, 0), 1, conv_weights_quant_info.at(1))
397               .set_name("Conv_1")
398               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name("Conv_1/Relu6")
399               << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, common_params.data_layout)).set_name("Logits/AvgPool")
400               << ConvolutionLayer(1U, 1U, 1001U,
401                                   get_weights_accessor(data_path, "Logits_Conv2d_1c_1x1_weights.npy"),
402                                   get_weights_accessor(data_path, "Logits_Conv2d_1c_1x1_biases.npy"),
403                                   PadStrideInfo(1, 1, 0, 0), 1, conv_weights_quant_info.at(2))
404               .set_name("Logits/Conv2d_1c_1x1");
405     }
406 
get_expanded_conv_qasymm8(const std::string & data_path,std::string && param_path,IsResidual is_residual,unsigned int input_channels,unsigned int output_channels,PadStrideInfo dwc_pad_stride_info,const QuantizationInfo & pwi,const QuantizationInfo & dwi,const QuantizationInfo & pji)407     void get_expanded_conv_qasymm8(const std::string &data_path, std::string &&param_path, IsResidual is_residual,
408                                    unsigned int input_channels, unsigned int output_channels,
409                                    PadStrideInfo           dwc_pad_stride_info,
410                                    const QuantizationInfo &pwi, const QuantizationInfo &dwi, const QuantizationInfo &pji)
411     {
412         std::string total_path = param_path + "_";
413 
414         SubStream left(graph);
415         left << ConvolutionLayer(1U, 1U, input_channels,
416                                  get_weights_accessor(data_path, total_path + "project_weights.npy"),
417                                  get_weights_accessor(data_path, total_path + "project_biases.npy"),
418                                  PadStrideInfo(1, 1, 0, 0), 1, pwi)
419              .set_name(param_path + "/Conv2D")
420              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name(param_path + "/Conv2D/Relu6")
421              << DepthwiseConvolutionLayer(3U, 3U,
422                                           get_weights_accessor(data_path, total_path + "depthwise_depthwise_weights.npy"),
423                                           get_weights_accessor(data_path, total_path + "depthwise_depthwise_biases.npy"),
424                                           dwc_pad_stride_info, 1, dwi)
425              .set_name(param_path + "/depthwise/depthwise")
426              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name(param_path + "/depthwise/Relu6")
427              << ConvolutionLayer(1U, 1U, output_channels,
428                                  get_weights_accessor(data_path, total_path + "project_weights.npy"),
429                                  get_weights_accessor(data_path, total_path + "project_biases.npy"),
430                                  PadStrideInfo(1, 1, 0, 0), 1, pji)
431              .set_name(param_path + "/project/Conv2D");
432 
433         if(is_residual == IsResidual::Yes)
434         {
435             // Add residual node
436             SubStream right(graph);
437             graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(param_path + "/add");
438         }
439         else
440         {
441             graph.forward_tail(left.tail_node());
442         }
443     }
444 };
445 
446 /** Main program for MobileNetV2
447  *
448  * Model is based on:
449  *      https://arxiv.org/abs/1801.04381
450  *      "MobileNetV2: Inverted Residuals and Linear Bottlenecks"
451  *      Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
452  *
453  * Provenance: https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_224.tgz
454  *
455  * @note To list all the possible arguments execute the binary appended with the --help option
456  *
457  * @param[in] argc Number of arguments
458  * @param[in] argv Arguments
459  */
main(int argc,char ** argv)460 int main(int argc, char **argv)
461 {
462     return arm_compute::utils::run_example<GraphMobilenetV2Example>(argc, argv);
463 }
464