• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright (c) 2017-2018 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25#include "types.h"
26
27#if defined(CELL_WIDTH) && defined(CELL_HEIGHT) && defined(NUM_BINS) && defined(PHASE_SCALE)
28
29/** This OpenCL kernel computes the HOG orientation binning
30 *
31 * @attention The following variables must be passed at compile time:
32 *
33 * -# -DCELL_WIDTH = Width of the cell
34 * -# -DCELL_HEIGHT = height of the cell
35 * -# -DNUM_BINS = Number of bins for each cell
36 * -# -DPHASE_SCALE = Scale factor used to evaluate the index of the local HOG
37 *
38 * @note Each work-item computes a single cell
39 *
40 * @param[in]  mag_ptr                             Pointer to the source image which stores the magnitude of the gradient for each pixel. Supported data types: S16
41 * @param[in]  mag_stride_x                        Stride of the magnitude image in X dimension (in bytes)
42 * @param[in]  mag_step_x                          mag_stride_x * number of elements along X processed per workitem(in bytes)
43 * @param[in]  mag_stride_y                        Stride of the magnitude image in Y dimension (in bytes)
44 * @param[in]  mag_step_y                          mag_stride_y * number of elements along Y processed per workitem(in bytes)
45 * @param[in]  mag_offset_first_element_in_bytes   The offset of the first element in the magnitude image
46 * @param[in]  phase_ptr                           Pointer to the source image which stores the phase of the gradient for each pixel. Supported data types: U8
47 * @param[in]  phase_stride_x                      Stride of the phase image in X dimension (in bytes)
48 * @param[in]  phase_step_x                        phase_stride_x * number of elements along X processed per workitem(in bytes)
49 * @param[in]  phase_stride_y                      Stride of the the phase image in Y dimension (in bytes)
50 * @param[in]  phase_step_y                        phase_stride_y * number of elements along Y processed per workitem(in bytes)
51 * @param[in]  phase_offset_first_element_in_bytes The offset of the first element in the the phase image
52 * @param[out] dst_ptr                             Pointer to the destination image which stores the local HOG for each cell Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
53 * @param[in]  dst_stride_x                        Stride of the destination image in X dimension (in bytes)
54 * @param[in]  dst_step_x                          dst_stride_x * number of elements along X processed per workitem(in bytes)
55 * @param[in]  dst_stride_y                        Stride of the destination image in Y dimension (in bytes)
56 * @param[in]  dst_step_y                          dst_stride_y * number of elements along Y processed per workitem(in bytes)
57 * @param[in]  dst_offset_first_element_in_bytes   The offset of the first element in the destination image
58 */
59__kernel void hog_orientation_binning(IMAGE_DECLARATION(mag),
60                                      IMAGE_DECLARATION(phase),
61                                      IMAGE_DECLARATION(dst))
62{
63    float bins[NUM_BINS] = { 0 };
64
65    // Compute address for the magnitude and phase images
66    Image mag   = CONVERT_TO_IMAGE_STRUCT(mag);
67    Image phase = CONVERT_TO_IMAGE_STRUCT(phase);
68
69    __global uchar *mag_row_ptr   = mag.ptr;
70    __global uchar *phase_row_ptr = phase.ptr;
71
72    for(int yc = 0; yc < CELL_HEIGHT; ++yc)
73    {
74        int xc = 0;
75        for(; xc <= (CELL_WIDTH - 4); xc += 4)
76        {
77            // Load magnitude and phase values
78            const float4 mag_f32   = convert_float4(vload4(0, (__global short *)mag_row_ptr + xc));
79            float4       phase_f32 = convert_float4(vload4(0, phase_row_ptr + xc));
80
81            // Scale phase: phase * scale + 0.5f
82            phase_f32 = (float4)0.5f + phase_f32 * (float4)PHASE_SCALE;
83
84            // Compute histogram index.
85            int4 hidx_s32 = convert_int4(phase_f32);
86
87            // Compute magnitude weights (w0 and w1)
88            const float4 hidx_f32 = convert_float4(hidx_s32);
89
90            // w1 = phase_f32 - hidx_s32
91            const float4 w1_f32 = phase_f32 - hidx_f32;
92
93            // w0 = 1.0 - w1
94            const float4 w0_f32 = (float4)1.0f - w1_f32;
95
96            // Calculate the weights for splitting vote
97            const float4 mag_w0_f32 = mag_f32 * w0_f32;
98            const float4 mag_w1_f32 = mag_f32 * w1_f32;
99
100            // Weighted vote between 2 bins
101
102            // Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
103            hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
104
105            // Bin 0
106            bins[hidx_s32.s0] += mag_w0_f32.s0;
107            bins[hidx_s32.s1] += mag_w0_f32.s1;
108            bins[hidx_s32.s2] += mag_w0_f32.s2;
109            bins[hidx_s32.s3] += mag_w0_f32.s3;
110
111            hidx_s32 += (int4)1;
112
113            // Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
114            hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
115
116            // Bin1
117            bins[hidx_s32.s0] += mag_w1_f32.s0;
118            bins[hidx_s32.s1] += mag_w1_f32.s1;
119            bins[hidx_s32.s2] += mag_w1_f32.s2;
120            bins[hidx_s32.s3] += mag_w1_f32.s3;
121        }
122
123        // Left over computation
124        for(; xc < CELL_WIDTH; xc++)
125        {
126            const float mag_value   = *((__global short *)mag_row_ptr + xc);
127            const float phase_value = *(phase_row_ptr + xc) * (float)PHASE_SCALE + 0.5f;
128            const float w1          = phase_value - floor(phase_value);
129
130            // The quantised phase is the histogram index [0, NUM_BINS - 1]
131            // Check limit of histogram index. If hidx == NUM_BINS, hidx = 0
132            const uint hidx = (uint)(phase_value) % NUM_BINS;
133
134            // Weighted vote between 2 bins
135            bins[hidx] += mag_value * (1.0f - w1);
136            bins[(hidx + 1) % NUM_BINS] += mag_value * w1;
137        }
138
139        // Point to the next row of magnitude and phase images
140        mag_row_ptr += mag_stride_y;
141        phase_row_ptr += phase_stride_y;
142    }
143
144    // Compute address for the destination image
145    Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
146
147    // Store the local HOG in the global memory
148    int xc = 0;
149    for(; xc <= (NUM_BINS - 4); xc += 4)
150    {
151        float4 values = vload4(0, bins + xc);
152
153        vstore4(values, 0, ((__global float *)dst.ptr) + xc);
154    }
155
156    // Left over stores
157    for(; xc < NUM_BINS; ++xc)
158    {
159        ((__global float *)dst.ptr)[xc] = bins[xc];
160    }
161}
162#endif /* CELL_WIDTH and CELL_HEIGHT and NUM_BINS and PHASE_SCALE */
163
164#if defined(NUM_CELLS_PER_BLOCK_HEIGHT) && defined(NUM_BINS_PER_BLOCK_X) && defined(NUM_BINS_PER_BLOCK) && defined(HOG_NORM_TYPE) && defined(L2_HYST_THRESHOLD)
165
166#ifndef L2_NORM
167#error The value of enum class HOGNormType::L2_NORM has not be passed to the OpenCL kernel
168#endif /* not L2_NORM */
169
170#ifndef L2HYS_NORM
171#error The value of enum class HOGNormType::L2HYS_NORM has not be passed to the OpenCL kernel
172#endif /* not L2HYS_NORM */
173
174#ifndef L1_NORM
175#error The value of enum class HOGNormType::L1_NORM has not be passed to the OpenCL kernel
176#endif /* not L1_NORM */
177
178/** This OpenCL kernel computes the HOG block normalization
179 *
180 * @attention The following variables must be passed at compile time:
181 *
182 * -# -DNUM_CELLS_PER_BLOCK_HEIGHT = Number of cells for each block
183 * -# -DNUM_BINS_PER_BLOCK_X = Number of bins for each block along the X direction
184 * -# -DNUM_BINS_PER_BLOCK = Number of bins for each block
185 * -# -DHOG_NORM_TYPE = Normalization type
186 * -# -DL2_HYST_THRESHOLD = Threshold used for L2HYS_NORM normalization method
187 * -# -DL2_NORM = Value of the enum class HOGNormType::L2_NORM
188 * -# -DL2HYS_NORM = Value of the enum class HOGNormType::L2HYS_NORM
189 * -# -DL1_NORM = Value of the enum class HOGNormType::L1_NORM
190 *
191 * @note Each work-item computes a single block
192 *
193 * @param[in]  src_ptr                           Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
194 * @param[in]  src_stride_x                      Stride of the source image in X dimension (in bytes)
195 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
196 * @param[in]  src_stride_y                      Stride of the source image in Y dimension (in bytes)
197 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
198 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source image
199 * @param[out] dst_ptr                           Pointer to the destination image which stores the normlized HOG Supported data types: F32. Number of channels supported: equal to the number of histogram bins per block
200 * @param[in]  dst_stride_x                      Stride of the destination image in X dimension (in bytes)
201 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
202 * @param[in]  dst_stride_y                      Stride of the destination image in Y dimension (in bytes)
203 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
204 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination image
205 */
206__kernel void hog_block_normalization(IMAGE_DECLARATION(src),
207                                      IMAGE_DECLARATION(dst))
208{
209    float  sum     = 0.0f;
210    float4 sum_f32 = (float4)(0.0f);
211
212    // Compute address for the source and destination tensor
213    Image src = CONVERT_TO_IMAGE_STRUCT(src);
214    Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
215
216    for(size_t yc = 0; yc < NUM_CELLS_PER_BLOCK_HEIGHT; ++yc)
217    {
218        const __global float *hist_ptr = (__global float *)(src.ptr + yc * src_stride_y);
219
220        int xc = 0;
221        for(; xc <= (NUM_BINS_PER_BLOCK_X - 16); xc += 16)
222        {
223            const float4 val0 = vload4(0, hist_ptr + xc + 0);
224            const float4 val1 = vload4(0, hist_ptr + xc + 4);
225            const float4 val2 = vload4(0, hist_ptr + xc + 8);
226            const float4 val3 = vload4(0, hist_ptr + xc + 12);
227
228#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
229            // Compute val^2 for L2_NORM or L2HYS_NORM
230            sum_f32 += val0 * val0;
231            sum_f32 += val1 * val1;
232            sum_f32 += val2 * val2;
233            sum_f32 += val3 * val3;
234#else  /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
235            // Compute |val| for L1_NORM
236            sum_f32 += fabs(val0);
237            sum_f32 += fabs(val1);
238            sum_f32 += fabs(val2);
239            sum_f32 += fabs(val3);
240#endif /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
241
242            // Store linearly the input values un-normalized in the output image. These values will be reused for the normalization.
243            // This approach will help us to be cache friendly in the next for loop where the normalization will be done because all the values
244            // will be accessed consecutively
245            vstore4(val0, 0, ((__global float *)dst.ptr) + xc + 0 + yc * NUM_BINS_PER_BLOCK_X);
246            vstore4(val1, 0, ((__global float *)dst.ptr) + xc + 4 + yc * NUM_BINS_PER_BLOCK_X);
247            vstore4(val2, 0, ((__global float *)dst.ptr) + xc + 8 + yc * NUM_BINS_PER_BLOCK_X);
248            vstore4(val3, 0, ((__global float *)dst.ptr) + xc + 12 + yc * NUM_BINS_PER_BLOCK_X);
249        }
250
251        // Compute left over
252        for(; xc < NUM_BINS_PER_BLOCK_X; ++xc)
253        {
254            const float val = hist_ptr[xc];
255
256#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
257            sum += val * val;
258#else  /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
259            sum += fabs(val);
260#endif /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
261
262            ((__global float *)dst.ptr)[xc + 0 + yc * NUM_BINS_PER_BLOCK_X] = val;
263        }
264    }
265
266    sum += dot(sum_f32, (float4)1.0f);
267
268    float scale = 1.0f / (sqrt(sum) + NUM_BINS_PER_BLOCK * 0.1f);
269
270#if(HOG_NORM_TYPE == L2HYS_NORM)
271    // Reset sum
272    sum_f32 = (float4)0.0f;
273    sum     = 0.0f;
274
275    int k = 0;
276    for(; k <= NUM_BINS_PER_BLOCK - 16; k += 16)
277    {
278        float4 val0 = vload4(0, ((__global float *)dst.ptr) + k + 0);
279        float4 val1 = vload4(0, ((__global float *)dst.ptr) + k + 4);
280        float4 val2 = vload4(0, ((__global float *)dst.ptr) + k + 8);
281        float4 val3 = vload4(0, ((__global float *)dst.ptr) + k + 12);
282
283        // Scale val
284        val0 = val0 * (float4)scale;
285        val1 = val1 * (float4)scale;
286        val2 = val2 * (float4)scale;
287        val3 = val3 * (float4)scale;
288
289        // Clip val if over _threshold_l2hys
290        val0 = fmin(val0, (float4)L2_HYST_THRESHOLD);
291        val1 = fmin(val1, (float4)L2_HYST_THRESHOLD);
292        val2 = fmin(val2, (float4)L2_HYST_THRESHOLD);
293        val3 = fmin(val3, (float4)L2_HYST_THRESHOLD);
294
295        // Compute val^2
296        sum_f32 += val0 * val0;
297        sum_f32 += val1 * val1;
298        sum_f32 += val2 * val2;
299        sum_f32 += val3 * val3;
300
301        vstore4(val0, 0, ((__global float *)dst.ptr) + k + 0);
302        vstore4(val1, 0, ((__global float *)dst.ptr) + k + 4);
303        vstore4(val2, 0, ((__global float *)dst.ptr) + k + 8);
304        vstore4(val3, 0, ((__global float *)dst.ptr) + k + 12);
305    }
306
307    // Compute left over
308    for(; k < NUM_BINS_PER_BLOCK; ++k)
309    {
310        float val = ((__global float *)dst.ptr)[k] * scale;
311
312        // Clip scaled input_value if over L2_HYST_THRESHOLD
313        val = fmin(val, (float)L2_HYST_THRESHOLD);
314
315        sum += val * val;
316
317        ((__global float *)dst.ptr)[k] = val;
318    }
319
320    sum += dot(sum_f32, (float4)1.0f);
321
322    // We use the same constants of OpenCV
323    scale = 1.0f / (sqrt(sum) + 1e-3f);
324
325#endif /* (HOG_NORM_TYPE == L2HYS_NORM) */
326
327    int i = 0;
328    for(; i <= (NUM_BINS_PER_BLOCK - 16); i += 16)
329    {
330        float4 val0 = vload4(0, ((__global float *)dst.ptr) + i + 0);
331        float4 val1 = vload4(0, ((__global float *)dst.ptr) + i + 4);
332        float4 val2 = vload4(0, ((__global float *)dst.ptr) + i + 8);
333        float4 val3 = vload4(0, ((__global float *)dst.ptr) + i + 12);
334
335        // Multiply val by the normalization scale factor
336        val0 = val0 * (float4)scale;
337        val1 = val1 * (float4)scale;
338        val2 = val2 * (float4)scale;
339        val3 = val3 * (float4)scale;
340
341        vstore4(val0, 0, ((__global float *)dst.ptr) + i + 0);
342        vstore4(val1, 0, ((__global float *)dst.ptr) + i + 4);
343        vstore4(val2, 0, ((__global float *)dst.ptr) + i + 8);
344        vstore4(val3, 0, ((__global float *)dst.ptr) + i + 12);
345    }
346
347    for(; i < NUM_BINS_PER_BLOCK; ++i)
348    {
349        ((__global float *)dst.ptr)[i] *= scale;
350    }
351}
352#endif /* NUM_CELLS_PER_BLOCK_HEIGHT and NUM_BINS_PER_BLOCK_X and NUM_BINS_PER_BLOCK and HOG_NORM_TYPE and L2_HYST_THRESHOLD */
353
354#if defined(NUM_BLOCKS_PER_DESCRIPTOR_Y) && defined(NUM_BINS_PER_DESCRIPTOR_X) && defined(THRESHOLD) && defined(MAX_NUM_DETECTION_WINDOWS) && defined(IDX_CLASS) && defined(DETECTION_WINDOW_STRIDE_WIDTH) && defined(DETECTION_WINDOW_STRIDE_HEIGHT) && defined(DETECTION_WINDOW_WIDTH) && defined(DETECTION_WINDOW_HEIGHT)
355
356/** This OpenCL kernel computes the HOG detector using linear SVM
357 *
358 * @attention The following variables must be passed at compile time:
359 *
360 * -# -DNUM_BLOCKS_PER_DESCRIPTOR_Y = Number of blocks per descriptor along the Y direction
361 * -# -DNUM_BINS_PER_DESCRIPTOR_X = Number of bins per descriptor along the X direction
362 * -# -DTHRESHOLD = Threshold for the distance between features and SVM classifying plane
363 * -# -DMAX_NUM_DETECTION_WINDOWS = Maximum number of possible detection windows. It is equal to the size of the DetectioWindow array
364 * -# -DIDX_CLASS = Index of the class to detect
365 * -# -DDETECTION_WINDOW_STRIDE_WIDTH = Detection window stride for the X direction
366 * -# -DDETECTION_WINDOW_STRIDE_HEIGHT = Detection window stride for the Y direction
367 * -# -DDETECTION_WINDOW_WIDTH = Width of the detection window
368 * -# -DDETECTION_WINDOW_HEIGHT = Height of the detection window
369 *
370 * @note Each work-item computes a single detection window
371 *
372 * @param[in]  src_ptr                           Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
373 * @param[in]  src_stride_x                      Stride of the source image in X dimension (in bytes)
374 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
375 * @param[in]  src_stride_y                      Stride of the source image in Y dimension (in bytes)
376 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
377 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source image
378 * @param[in]  hog_descriptor                    Pointer to HOG descriptor. Supported data types: F32
379 * @param[out] dst                               Pointer to DetectionWindow array
380 * @param[out] num_detection_windows             Number of objects detected
381 */
382__kernel void hog_detector(IMAGE_DECLARATION(src),
383                           __global float *hog_descriptor,
384                           __global DetectionWindow *dst,
385                           __global uint *num_detection_windows)
386{
387    // Check if the DetectionWindow array is full
388    if(*num_detection_windows >= MAX_NUM_DETECTION_WINDOWS)
389    {
390        return;
391    }
392
393    Image src = CONVERT_TO_IMAGE_STRUCT(src);
394
395    const int src_step_y_f32 = src_stride_y / sizeof(float);
396
397    // Init score_f32 with 0
398    float4 score_f32 = (float4)0.0f;
399
400    // Init score with 0
401    float score = 0.0f;
402
403    __global float *src_row_ptr = (__global float *)src.ptr;
404
405    // Compute Linear SVM
406    for(int yb = 0; yb < NUM_BLOCKS_PER_DESCRIPTOR_Y; ++yb, src_row_ptr += src_step_y_f32)
407    {
408        int xb = 0;
409
410        const int offset_y = yb * NUM_BINS_PER_DESCRIPTOR_X;
411
412        for(; xb < (int)NUM_BINS_PER_DESCRIPTOR_X - 8; xb += 8)
413        {
414            // Load descriptor values
415            float4 a0_f32 = vload4(0, src_row_ptr + xb + 0);
416            float4 a1_f32 = vload4(0, src_row_ptr + xb + 4);
417
418            float4 b0_f32 = vload4(0, hog_descriptor + xb + 0 + offset_y);
419            float4 b1_f32 = vload4(0, hog_descriptor + xb + 4 + offset_y);
420
421            // Multiply accumulate
422            score_f32 += a0_f32 * b0_f32;
423            score_f32 += a1_f32 * b1_f32;
424        }
425
426        for(; xb < NUM_BINS_PER_DESCRIPTOR_X; ++xb)
427        {
428            const float a = src_row_ptr[xb];
429            const float b = hog_descriptor[xb + offset_y];
430
431            score += a * b;
432        }
433    }
434
435    score += dot(score_f32, (float4)1.0f);
436
437    // Add the bias. The bias is located at the position (descriptor_size() - 1)
438    // (descriptor_size - 1) = NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y
439    score += hog_descriptor[NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y];
440
441    if(score > (float)THRESHOLD)
442    {
443        int id = atomic_inc(num_detection_windows);
444        if(id < MAX_NUM_DETECTION_WINDOWS)
445        {
446            dst[id].x         = get_global_id(0) * DETECTION_WINDOW_STRIDE_WIDTH;
447            dst[id].y         = get_global_id(1) * DETECTION_WINDOW_STRIDE_HEIGHT;
448            dst[id].width     = DETECTION_WINDOW_WIDTH;
449            dst[id].height    = DETECTION_WINDOW_HEIGHT;
450            dst[id].idx_class = IDX_CLASS;
451            dst[id].score     = score;
452        }
453    }
454}
455#endif /* NUM_BLOCKS_PER_DESCRIPTOR_Y && NUM_BINS_PER_DESCRIPTOR_X && THRESHOLD && MAX_NUM_DETECTION_WINDOWS && IDX_CLASS &&
456        * DETECTION_WINDOW_STRIDE_WIDTH && DETECTION_WINDOW_STRIDE_HEIGHT && DETECTION_WINDOW_WIDTH && DETECTION_WINDOW_HEIGHT */
457