• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/Helpers.h"
30 #include "arm_compute/core/TensorInfo.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
33 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
34 #include "src/core/AccessWindowStatic.h"
35 #include "src/core/CL/CLValidate.h"
36 #include "src/core/CL/ICLKernel.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 #include "src/core/helpers/WindowHelpers.h"
39 #include "support/StringSupport.h"
40 
41 namespace arm_compute
42 {
43 using namespace arm_compute::misc::shape_calculator;
44 
45 namespace
46 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & conv_info,unsigned int depth_multiplier,const ActivationLayerInfo & act_info,const Size2D dilation,const ITensorInfo * output_multipliers,const ITensorInfo * output_shifts)47 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
48                           const PadStrideInfo &conv_info, unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D dilation,
49                           const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
50 {
51     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
52     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
53     ARM_COMPUTE_RETURN_ERROR_ON_MSG((act_info.enabled()) && (input->data_type() == DataType::QASYMM8 || input->data_type() == DataType::QASYMM8_SIGNED)
54                                     && (act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
55                                     && (act_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
56                                     && (act_info.activation() != ActivationLayerInfo::ActivationFunction::RELU)
57                                     && (act_info.activation() != ActivationLayerInfo::ActivationFunction::LOGISTIC),
58                                     "For QASYMM8 only logistic, relu, lower bounded relu and lower-upper bounded relu are supported");
59     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != 3 || weights->dimension(1) != 3);
60     ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1 || conv_info.stride().first > 3);
61 
62     ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));
63 
64     const bool is_qasymm = is_data_type_quantized_asymmetric(input->data_type());
65 
66     if(biases != nullptr)
67     {
68         if(is_qasymm)
69         {
70             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
71         }
72         else
73         {
74             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
75         }
76         ARM_COMPUTE_RETURN_ERROR_ON((biases->dimension(0) != weights->dimension(2)) && (weights->dimension(2) != 1 || biases->dimension(0) != weights->dimension(3)));
77         ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
78     }
79 
80     if(is_qasymm)
81     {
82         ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output_multipliers, output_shifts);
83         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
84         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
85         ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
86         ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
87 
88         if(is_data_type_quantized_per_channel(weights->data_type()))
89         {
90             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
91             ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) != output_multipliers->dimension(0));
92             ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) != output_shifts->dimension(0));
93         }
94         else
95         {
96             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
97             ARM_COMPUTE_RETURN_ERROR_ON(1 != output_multipliers->dimension(0));
98             ARM_COMPUTE_RETURN_ERROR_ON(1 != output_shifts->dimension(0));
99         }
100     }
101     else
102     {
103         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
104     }
105 
106     if(output->total_size() != 0)
107     {
108         const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
109         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
110     }
111 
112     return Status{};
113 }
114 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * weights,ITensorInfo * output,const PadStrideInfo & conv_info,unsigned int depth_multiplier,GPUTarget gpu_target,std::string & kernel_name,const Size2D dilation)115 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info,
116                                                         unsigned int depth_multiplier, GPUTarget gpu_target, std::string &kernel_name, const Size2D dilation)
117 {
118     // Output auto inizialitation if not yet initialized
119     const TensorShape output_shape = compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
120     auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape).set_quantization_info(output->quantization_info()));
121 
122     const unsigned int conv_stride_x = conv_info.stride().first;
123     const unsigned int conv_stride_y = conv_info.stride().second;
124     const bool         is_qasymm     = is_data_type_quantized_asymmetric(input->data_type());
125     const bool         is_bifrost    = get_arch_from_target(gpu_target) == GPUTarget::BIFROST;
126 
127     // Configure kernel window
128     unsigned int num_elems_read_per_iteration_x    = 0;
129     unsigned int num_elems_read_per_iteration_y    = 0;
130     unsigned int num_elems_written_per_iteration_x = 0;
131     unsigned int num_elems_written_per_iteration_y = 0;
132 
133     if(input->data_type() == DataType::F16)
134     {
135         kernel_name                       = "depthwise_convolution_3x3_f16";
136         num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
137         num_elems_written_per_iteration_y = 1;
138         num_elems_read_per_iteration_y    = 3;
139         switch(conv_stride_x)
140         {
141             case 1:
142                 num_elems_read_per_iteration_x = 8;
143                 break;
144             case 2:
145                 num_elems_read_per_iteration_x = 9;
146                 break;
147             case 3:
148                 num_elems_read_per_iteration_x = 16;
149                 break;
150             default:
151                 num_elems_read_per_iteration_x = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
152                 break;
153         }
154         if(is_bifrost)
155         {
156             if(conv_stride_x == 1 && conv_stride_y == 1)
157             {
158                 kernel_name                       = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f16";
159                 num_elems_read_per_iteration_x    = 8;
160                 num_elems_written_per_iteration_x = 4;
161                 num_elems_read_per_iteration_y    = 6;
162                 num_elems_written_per_iteration_y = 4;
163             }
164             else if(conv_stride_x == 2 && conv_stride_y == 2)
165             {
166                 kernel_name                       = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f16";
167                 num_elems_read_per_iteration_x    = 10;
168                 num_elems_written_per_iteration_x = 4;
169                 num_elems_read_per_iteration_y    = 5;
170                 num_elems_written_per_iteration_y = 2;
171             }
172         }
173     }
174     else if(input->data_type() == DataType::F32 && is_bifrost)
175     {
176         if(conv_stride_x == 1 && conv_stride_y == 1)
177         {
178             kernel_name                       = "depthwise_convolution_3x3_stridex1_stridey1_bifrost_f32";
179             num_elems_read_per_iteration_x    = 4;
180             num_elems_read_per_iteration_y    = 6;
181             num_elems_written_per_iteration_x = 2;
182             num_elems_written_per_iteration_y = 4;
183         }
184         else if(conv_stride_x == 2 && conv_stride_y == 2)
185         {
186             kernel_name                       = "depthwise_convolution_3x3_stridex2_stridey2_bifrost_f32";
187             num_elems_read_per_iteration_x    = 6;
188             num_elems_read_per_iteration_y    = 5;
189             num_elems_written_per_iteration_x = 2;
190             num_elems_written_per_iteration_y = 2;
191         }
192         else
193         {
194             kernel_name                       = "depthwise_convolution_3x3";
195             num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
196             num_elems_written_per_iteration_y = 1;
197             num_elems_read_per_iteration_x    = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x;
198             num_elems_read_per_iteration_y    = 3;
199         }
200     }
201     else
202     {
203         const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()) && !is_data_type_quantized_per_channel(weights->data_type());
204 
205         kernel_name = is_qasymm ? "dwc_3x3_native_quantized8" : "depthwise_convolution_3x3";
206         kernel_name += (is_qasymm && is_dot8_supported ? "_dot8" : "");
207         kernel_name += (is_qasymm ? "_nchw" : "");
208 
209         num_elems_written_per_iteration_x = 8 / data_size_from_type(input->data_type());
210         num_elems_written_per_iteration_y = (is_qasymm && conv_stride_y == 1 && dilation.y() == 1) ? 2 : 1;
211         num_elems_read_per_iteration_x    = 3 + (num_elems_written_per_iteration_x - 1) * conv_stride_x + (conv_stride_x > 1 ? 1 : 0);
212         num_elems_read_per_iteration_y    = num_elems_written_per_iteration_y + 2;
213     }
214     num_elems_read_per_iteration_x += (num_elems_read_per_iteration_x - 1) * (dilation.x() - 1);
215     num_elems_read_per_iteration_y += (num_elems_read_per_iteration_y - 1) * (dilation.y() - 1);
216 
217     // Create window and update padding
218     Window win = calculate_max_window(*output, Steps(num_elems_written_per_iteration_x, num_elems_written_per_iteration_y));
219 
220     AccessWindowRectangle input_access(input, -conv_info.pad_left(), -conv_info.pad_top(),
221                                        num_elems_read_per_iteration_x, num_elems_read_per_iteration_y,
222                                        conv_stride_x, conv_stride_y);
223     AccessWindowStatic    weights_access(weights, 0, 0, 3, 3);
224     AccessWindowRectangle output_access(output, 0, 0, num_elems_written_per_iteration_x, num_elems_written_per_iteration_y);
225 
226     bool window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
227 
228     output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
229 
230     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
231     return std::make_pair(err, win);
232 }
233 } // namespace
234 
CLDepthwiseConvolutionLayer3x3NCHWKernel()235 CLDepthwiseConvolutionLayer3x3NCHWKernel::CLDepthwiseConvolutionLayer3x3NCHWKernel()
236     : _conv_stride_x(0), _conv_pad_top(0), _conv_pad_left(0)
237 {
238 }
239 
border_size() const240 BorderSize CLDepthwiseConvolutionLayer3x3NCHWKernel::border_size() const
241 {
242     return _border_size;
243 }
244 
configure(const ICLTensor * input,const ICLTensor * weights,const ICLTensor * biases,ICLTensor * output,const PadStrideInfo & conv_info,unsigned int depth_multiplier,ActivationLayerInfo act_info,const Size2D & dilation,const ICLTensor * output_multipliers,const ICLTensor * output_shifts)245 void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
246                                                          const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation,
247                                                          const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
248 {
249     configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, output_multipliers, output_shifts);
250 }
251 
configure(const CLCompileContext & compile_context,const ICLTensor * input,const ICLTensor * weights,const ICLTensor * biases,ICLTensor * output,const PadStrideInfo & conv_info,unsigned int depth_multiplier,ActivationLayerInfo act_info,const Size2D & dilation,const ICLTensor * output_multipliers,const ICLTensor * output_shifts)252 void CLDepthwiseConvolutionLayer3x3NCHWKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
253                                                          const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation,
254                                                          const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
255 {
256     ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
257     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(),
258                                                   conv_info, depth_multiplier, act_info, dilation,
259                                                   (output_multipliers != nullptr) ? output_multipliers->info() : nullptr,
260                                                   (output_shifts != nullptr) ? output_shifts->info() : nullptr));
261 
262     _input              = input;
263     _output             = output;
264     _weights            = weights;
265     _biases             = biases;
266     _conv_stride_x      = conv_info.stride().first;
267     _conv_stride_y      = conv_info.stride().second;
268     _conv_pad_left      = conv_info.pad_left();
269     _conv_pad_top       = conv_info.pad_top();
270     _border_size        = BorderSize(_conv_pad_top, conv_info.pad_right(), conv_info.pad_bottom(), _conv_pad_left);
271     _output_multipliers = output_multipliers;
272     _output_shifts      = output_shifts;
273     _is_quantized       = is_data_type_quantized_asymmetric(input->info()->data_type());
274 
275     // Configure kernel window
276     std::string     kernel_name;
277     const GPUTarget gpu_target = get_target();
278 
279     auto win_config = validate_and_configure_window(input->info(), weights->info(), output->info(), conv_info, depth_multiplier, gpu_target, kernel_name, dilation);
280     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
281     ICLKernel::configure_internal(win_config.second);
282 
283     // Set build options
284     CLBuildOptions build_opts;
285     build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
286     build_opts.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(_output->info()->tensor_shape().z()));
287     build_opts.add_option("-DDEPTH_MULTIPLIER=" + support::cpp11::to_string(depth_multiplier));
288     build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(_conv_stride_x));
289     build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x()));
290     build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y()));
291     build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");
292 
293     if(_is_quantized)
294     {
295         const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform();
296         const UniformQuantizationInfo wq_info = _weights->info()->quantization_info().uniform();
297         const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform();
298 
299         const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type());
300         const bool is_dot8_supported        = dot8_supported(CLKernelLibrary::get().get_device()) && !is_quantized_per_channel;
301         build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(_conv_stride_y));
302         build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-iq_info.offset));
303         build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-wq_info.offset));
304         build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(oq_info.offset));
305         build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(9 * iq_info.offset * wq_info.offset));
306         build_opts.add_option_if(is_quantized_per_channel, "-DPER_CHANNEL_QUANTIZATION");
307         build_opts.add_option_if(is_dot8_supported, "-DIS_DOT8");
308 
309         // Compute non-per-channel multiplier and shift anyway to make OpenCL kernel simpler
310         float multiplier        = iq_info.scale * wq_info.scale / oq_info.scale;
311         int   output_multiplier = 0;
312         int   output_shift      = 0;
313         quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
314         build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
315         build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
316 
317         if(act_info.enabled())
318         {
319             int a_val{};
320             int b_val{};
321             std::tie(b_val, a_val) = get_quantized_activation_min_max(act_info, input->info()->data_type(), oq_info);
322 
323             const int o1 = oq_info.offset;
324 
325             build_opts.add_option("-DA_VAL=" + support::cpp11::to_string(a_val));
326             build_opts.add_option("-DB_VAL=" + support::cpp11::to_string(b_val));
327             build_opts.add_option("-DCONST_0=" + support::cpp11::to_string(o1));
328 
329             const float s1 = iq_info.scale;
330             build_opts.add_option("-DS1_VAL=" + float_to_string_with_full_precision(s1));
331             build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1));
332         }
333 
334         build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
335         build_opts.add_option("-DWEIGHTS_TYPE=" + get_cl_type_from_data_type(weights->info()->data_type()));
336         build_opts.add_option("-DWEIGHTS_PROMOTED_TYPE=" + get_cl_promoted_type_from_data_type(weights->info()->data_type()));
337     }
338     else
339     {
340         build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
341         build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
342         build_opts.add_option_if(act_info.enabled(), "-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
343         build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(win_config.second.x().step()));
344     }
345 
346     build_opts.add_option_if(input->info()->data_type() == DataType::F16, "-DIS_F16");
347     build_opts.add_option_if(input->info()->data_type() == DataType::F32, "-DIS_F32");
348 
349     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
350 
351     // Set config_id for enabling LWS tuning
352     _config_id = kernel_name;
353     _config_id += "_";
354     _config_id += lower_string(string_from_data_type(input->info()->data_type()));
355     _config_id += "_";
356     _config_id += support::cpp11::to_string(input->info()->dimension(0));
357     _config_id += "_";
358     _config_id += support::cpp11::to_string(input->info()->dimension(1));
359     _config_id += "_";
360     _config_id += support::cpp11::to_string(input->info()->dimension(2));
361     _config_id += "_";
362     _config_id += support::cpp11::to_string(output->info()->dimension(0));
363     _config_id += "_";
364     _config_id += support::cpp11::to_string(output->info()->dimension(1));
365 }
366 
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & conv_info,unsigned int depth_multiplier,ActivationLayerInfo act_info,GPUTarget gpu_target,const Size2D & dilation,const ITensorInfo * output_multipliers,const ITensorInfo * output_shifts)367 Status CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
368                                                           const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target,
369                                                           const Size2D &dilation, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
370 {
371     std::string kernel_name;
372     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, output_multipliers, output_shifts));
373     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), output->clone().get(),
374                                                               conv_info, depth_multiplier, gpu_target, kernel_name, dilation)
375                                 .first);
376 
377     return Status{};
378 }
379 
run(const Window & window,cl::CommandQueue & queue)380 void CLDepthwiseConvolutionLayer3x3NCHWKernel::run(const Window &window, cl::CommandQueue &queue)
381 {
382     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
383     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
384 
385     Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
386 
387     // Create input window and adjust
388     Window collapsed_in = collapsed;
389     collapsed_in.adjust(Window::DimX, -_conv_pad_left, true);
390     collapsed_in.adjust(Window::DimY, -_conv_pad_top, true);
391     collapsed_in.set_dimension_step(Window::DimX, collapsed_in.x().step() * _conv_stride_x);
392     collapsed_in.set_dimension_step(Window::DimY, collapsed_in.y().step() * _conv_stride_y);
393 
394     Window slice_in      = collapsed_in.first_slice_window_3D();
395     Window slice_out     = collapsed.first_slice_window_3D();
396     Window slice_weights = window.first_slice_window_3D();
397     slice_weights.set_dimension_step(Window::DimX, 0);
398     slice_weights.set_dimension_step(Window::DimY, 0);
399 
400     unsigned int idx = 3 * num_arguments_per_3D_tensor();
401 
402     // Set output multipliers in case of quantized data type
403     if(_is_quantized)
404     {
405         Window slice;
406         slice.use_tensor_dimensions(_output_multipliers->info()->tensor_shape());
407         add_1D_tensor_argument(idx, _output_multipliers, slice);
408         add_1D_tensor_argument(idx, _output_shifts, slice);
409     }
410 
411     // Set biases
412     if(_biases != nullptr)
413     {
414         Window slice_biases;
415         slice_biases.use_tensor_dimensions(_biases->info()->tensor_shape());
416         add_1D_tensor_argument(idx, _biases, slice_biases);
417     }
418 
419     do
420     {
421         idx = 0;
422         add_3D_tensor_argument(idx, _input, slice_in);
423         add_3D_tensor_argument(idx, _output, slice_out);
424         add_3D_tensor_argument(idx, _weights, slice_weights);
425 
426         enqueue(queue, *this, slice_out, lws_hint());
427     }
428     while(collapsed.slide_window_slice_3D(slice_out) && collapsed_in.slide_window_slice_3D(slice_in));
429 }
430 } // namespace arm_compute
431