• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLGEMMMatrixMultiplyNativeKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Utils.h"
33 #include "arm_compute/core/Validate.h"
34 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
35 #include "src/core/AccessWindowStatic.h"
36 #include "src/core/helpers/AutoConfiguration.h"
37 #include "src/core/helpers/WindowHelpers.h"
38 #include "src/core/utils/helpers/float_ops.h"
39 #include "support/StringSupport.h"
40 
41 #include <cstddef>
42 #include <cstdint>
43 #include <tuple>
44 
45 using namespace arm_compute::misc::shape_calculator;
46 
47 namespace arm_compute
48 {
49 namespace
50 {
51 using ElementsProcessed = Steps;
52 
validate_arguments(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,float alpha,float beta,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info)53 Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float alpha, float beta, const GEMMLHSMatrixInfo &lhs_info,
54                           const GEMMRHSMatrixInfo &rhs_info,
55                           const GEMMKernelInfo    &gemm_info)
56 {
57     ARM_COMPUTE_UNUSED(alpha);
58     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
59     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F32);
60     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
61     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
62     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
63     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.k0 & (rhs_info.k0 - 1)) && rhs_info.k0 != 3), "Only 2,3,4,8,16 are supported for k0");
64     ARM_COMPUTE_RETURN_ERROR_ON(rhs_info.k0 > 16);
65     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 1 || lhs_info.m0 > 8);
66     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3), "Only 2,3,4,8,16 are supported for n0");
67     ARM_COMPUTE_RETURN_ERROR_ON_MSG((gemm_info.reinterpret_input_as_3d || gemm_info.depth_output_gemm3d != 0) && (input2 != nullptr)
68                                     && (!gemm_info.broadcast_bias),
69                                     "Bias addition only supported with broadcast mode in case the input or output has to be reinterpreted as 3D");
70     ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.fp_mixed_precision, "Mixed precision not supported");
71     ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for GEMM native");
72 
73     const unsigned int m = gemm_info.m;
74     const unsigned int n = gemm_info.n;
75     const unsigned int k = gemm_info.k;
76 
77     ARM_COMPUTE_UNUSED(m);
78     ARM_COMPUTE_UNUSED(n);
79     ARM_COMPUTE_UNUSED(k);
80 
81     ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != k);
82     ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != n);
83     ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(1) != k);
84     if(gemm_info.reinterpret_input_as_3d)
85     {
86         ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) * input0->dimension(2) != m);
87     }
88     else
89     {
90         ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != m);
91     }
92 
93     if(input2 != nullptr && !(helpers::float_ops::is_zero(beta)))
94     {
95         const unsigned int input2_dim0 = input2->dimension(0);
96         const unsigned int input2_dim1 = input2->dimension(1);
97 
98         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input2, input1);
99         if(gemm_info.broadcast_bias)
100         {
101             ARM_COMPUTE_RETURN_ERROR_ON_MSG((input2_dim1 != 1 || input2_dim0 != n), "Incorrect dimension of bias matrix which is to be broadcasted");
102         }
103         else
104         {
105             ARM_COMPUTE_RETURN_ERROR_ON_MSG((input2_dim0 != n || input2_dim1 != m), "Incorrect dimension of bias matrix");
106         }
107     }
108 
109     if(output->total_size() != 0)
110     {
111         const TensorInfo tensor_info_output = output->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info));
112         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
113         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
114     }
115 
116     return Status{};
117 }
118 
validate_and_configure_window(ITensorInfo * input0,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info,ElementsProcessed & num_elements_processed)119 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const GEMMLHSMatrixInfo &lhs_info,
120                                                         const GEMMRHSMatrixInfo &rhs_info,
121                                                         const GEMMKernelInfo &gemm_info, ElementsProcessed &num_elements_processed)
122 {
123     unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
124     unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
125     bool          reinterpret_input_as_3d             = gemm_info.reinterpret_input_as_3d;
126     bool          reinterpret_output_as_3d            = gemm_info.depth_output_gemm3d != 0;
127 
128     Window win{};
129     Window win_out{};
130     bool   window_changed = false;
131 
132     // In case both input and output have to be reinterpreted as 3D tensors,
133     // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
134     if(reinterpret_input_as_3d == reinterpret_output_as_3d)
135     {
136         reinterpret_output_as_3d = false;
137     }
138 
139     // Output tensor auto initialization if not yet initialized
140     auto_init_if_empty(*output, input0->clone()->set_tensor_shape(compute_mm_shape(*input0, *input1, gemm_info)));
141 
142     TensorInfo tmp_info(*output);
143 
144     if(reinterpret_output_as_3d)
145     {
146         // Since the output tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
147         // the window needs to be constructed on the 2D collapsed version of the tensor
148         TensorShape tmp_shape(output->tensor_shape());
149         tmp_shape.collapse(2U, 1U);
150         tmp_info.set_tensor_shape(tmp_shape);
151     }
152 
153     // Configure kernel window
154     num_elems_processed_per_iteration_x = rhs_info.n0;
155     num_elems_processed_per_iteration_y = lhs_info.m0;
156 
157     win     = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
158     win_out = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
159 
160     AccessWindowStatic input0_access(input0, 0, 0,
161                                      input0->dimension(0),
162                                      input0->dimension(1));
163     AccessWindowStatic input1_access(input1, 0, 0,
164                                      ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x),
165                                      input1->dimension(1));
166     AccessWindowStatic output_access(output, 0, 0,
167                                      output->dimension(0),
168                                      output->dimension(1));
169 
170     if(input2 != nullptr)
171     {
172         const int bias_processed_per_iteration_x = num_elems_processed_per_iteration_x;
173 
174         AccessWindowStatic input2_access(input2, 0, 0,
175                                          ceil_to_multiple(input2->dimension(0), bias_processed_per_iteration_x),
176                                          input2->dimension(1));
177 
178         window_changed = update_window_and_padding(win, input0_access, input1_access, input2_access) || // window used by the execute_window_loop
179                          update_window_and_padding(win_out, output_access);                             // window used to update the padding requirements of output tensor
180     }
181     else
182     {
183         window_changed = update_window_and_padding(win, input0_access, input1_access) || // window used by the execute_window_loop
184                          update_window_and_padding(win_out, output_access);              // window used to update the padding requirements of output tensor
185     }
186 
187     output_access.set_valid_region(win_out, ValidRegion(Coordinates(), output->tensor_shape()));
188 
189     // Collapse along the Z direction
190     // This collapse needs to be here in order to tune the Z dimension of LWS
191     Window             collapsed             = win;
192     const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(output->num_dimensions()), 2u);
193     collapsed                                = win.collapse(win, dimension_to_collapse);
194 
195     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
196     return std::make_pair(err, collapsed);
197 }
198 } // namespace
199 
CLGEMMMatrixMultiplyNativeKernel()200 CLGEMMMatrixMultiplyNativeKernel::CLGEMMMatrixMultiplyNativeKernel()
201     : _input0(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _slide_matrix_b(true), _reinterpret_input_as_3d(false), _reinterpret_output_as_3d(false), _use_dummy_work_items(false),
202       _add_bias(false), _broadcast_bias(false)
203 {
204 }
205 
configure(const ICLTensor * input0,const ICLTensor * input1,const ICLTensor * input2,ICLTensor * output,float alpha,float beta,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info)206 void CLGEMMMatrixMultiplyNativeKernel::configure(const ICLTensor *input0, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float alpha, float beta,
207                                                  const GEMMLHSMatrixInfo &lhs_info,
208                                                  const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
209 {
210     configure(CLKernelLibrary::get().get_compile_context(), input0, input1, input2, output, alpha, beta, lhs_info, rhs_info, gemm_info);
211 }
212 
configure(const CLCompileContext & compile_context,const ICLTensor * input0,const ICLTensor * input1,const ICLTensor * input2,ICLTensor * output,float alpha,float beta,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info)213 void CLGEMMMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input0, const ICLTensor *input1, const ICLTensor *input2, ICLTensor *output, float alpha,
214                                                  float                    beta,
215                                                  const GEMMLHSMatrixInfo &lhs_info,
216                                                  const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
217 {
218     ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
219 
220     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), (input2 != nullptr ? input2->info() : nullptr), output->info(), alpha, beta, lhs_info, rhs_info, gemm_info));
221 
222     auto padding_info         = get_padding_info({ input0, output });
223     _input0                   = input0;
224     _input1                   = input1;
225     _input2                   = helpers::float_ops::is_zero(beta) ? nullptr : input2;
226     _output                   = output;
227     _reinterpret_input_as_3d  = gemm_info.reinterpret_input_as_3d;
228     _reinterpret_output_as_3d = gemm_info.depth_output_gemm3d != 0;
229     _use_dummy_work_items     = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
230     _add_bias                 = _input2 != nullptr;
231     _broadcast_bias           = gemm_info.broadcast_bias;
232 
233     // In case both input and output have to be reinterpreted as 3D tensors,
234     // force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
235     if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
236     {
237         _reinterpret_input_as_3d  = false;
238         _reinterpret_output_as_3d = false;
239     }
240 
241     // Check if we need to slide the matrix B
242     const unsigned int num_dimensions_input0 = _input0->info()->num_dimensions();
243     _slide_matrix_b                          = (_input1->info()->num_dimensions() >= num_dimensions_input0);
244 
245     ElementsProcessed num_elements_processed{};
246 
247     // Configure kernel window
248     auto win_config = validate_and_configure_window(input0->info(), input1->info(), input2 != nullptr ? input2->info() : nullptr, output->info(), lhs_info, rhs_info, gemm_info, num_elements_processed);
249     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
250     ICLKernel::configure_internal(win_config.second);
251 
252     // If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true,
253     // we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
254     // This means that the actual m used by the kernel is given by output->info()->dimension(1) and not by gemm_info.m
255     const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m : output->info()->dimension(1);
256 
257     const unsigned int h_gemm_3d = _reinterpret_output_as_3d ? output->info()->dimension(1) : input0->info()->dimension(1);
258     const unsigned int d_gemm_3d = _reinterpret_output_as_3d ? output->info()->dimension(2) : input0->info()->dimension(2);
259 
260     // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
261     const unsigned int partial_store_m0 = internal_m % lhs_info.m0;
262     const unsigned int partial_store_n0 = gemm_info.n % rhs_info.n0;
263 
264     // Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
265     // NOTE: This might have implications on heuristics and performance
266     const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
267 
268     // Create build options
269     CLBuildOptions build_opts;
270     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input0->info()->data_type()));
271     build_opts.add_option_if(!(helpers::float_ops::is_one(alpha)), "-DALPHA=" + float_to_string_with_full_precision(alpha));
272     build_opts.add_option_if(_input2 != nullptr, "-DBETA=" + float_to_string_with_full_precision(beta));
273     build_opts.add_option_if(helpers::float_ops::is_one(beta), "-DUNIT_BETA");
274     build_opts.add_option_if(gemm_info.broadcast_bias, "-DBROADCAST_BIAS");
275     build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
276     build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
277     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(h_gemm_3d));
278     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(d_gemm_3d));
279     build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(input1->info()->dimension(2)));
280     build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
281     build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
282     build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n));
283     build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k));
284     build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
285     build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
286     build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
287     build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
288     build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
289     build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(gemm_info.activation_info.activation())));
290     build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.a()));
291     build_opts.add_option_if(gemm_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(gemm_info.activation_info.b()));
292 
293     std::string kernel_name("gemm_mm_native");
294 
295     // Create kernel
296     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
297 
298     // Set config_id for enabling LWS tuning
299     _config_id = kernel_name;
300     _config_id += "_";
301     _config_id += (_add_bias ? "add_bias_" : "");
302     _config_id += (_broadcast_bias ? "broadcast_bias_" : "");
303     _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
304     _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
305     _config_id += (gemm_info.activation_info.enabled() ? "fused_activation_" : "");
306     _config_id += lower_string(string_from_data_type(input0->info()->data_type()));
307     _config_id += "_";
308     _config_id += support::cpp11::to_string(output->info()->dimension(1));
309     _config_id += "_";
310     _config_id += support::cpp11::to_string(output->info()->dimension(0));
311     _config_id += "_";
312     _config_id += support::cpp11::to_string(gemm_info.k);
313     _config_id += "_";
314     _config_id += support::cpp11::to_string(output->info()->dimension(2));
315     _config_id += "_";
316     _config_id += support::cpp11::to_string(lhs_info.m0);
317     _config_id += "_";
318     _config_id += support::cpp11::to_string(rhs_info.n0);
319     _config_id += "_";
320     _config_id += support::cpp11::to_string(rhs_info.k0);
321 
322     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
323 }
324 
validate(const ITensorInfo * input0,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,float alpha,float beta,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMKernelInfo & gemm_info)325 Status CLGEMMMatrixMultiplyNativeKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float alpha, float beta,
326                                                   const GEMMLHSMatrixInfo &lhs_info,
327                                                   const GEMMRHSMatrixInfo &rhs_info, const GEMMKernelInfo &gemm_info)
328 {
329     ElementsProcessed num_elements_processed{};
330     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, input2, output, alpha, beta, lhs_info, rhs_info, gemm_info));
331     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
332                                                               input1->clone().get(),
333                                                               input2 != nullptr ? input2->clone().get() : nullptr,
334                                                               output->clone().get(),
335                                                               lhs_info,
336                                                               rhs_info,
337                                                               gemm_info,
338                                                               num_elements_processed)
339                                 .first);
340 
341     return Status{};
342 }
343 
run(const Window & window,cl::CommandQueue & queue)344 void CLGEMMMatrixMultiplyNativeKernel::run(const Window &window, cl::CommandQueue &queue)
345 {
346     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
347     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
348 
349     if(_input1->info()->num_dimensions() < 3)
350     {
351         // The stride_z for matrix B must be zero if we do not slice
352         ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
353     }
354 
355     Window slice          = window.first_slice_window_3D();
356     Window slice_matrix_b = slice;
357 
358     slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
359     slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
360 
361     if(_reinterpret_input_as_3d)
362     {
363         // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
364         unsigned int idx0;
365         if(_add_bias)
366         {
367             idx0 = 4 * num_arguments_per_2D_tensor() + 4;
368         }
369         else
370         {
371             idx0 = 3 * num_arguments_per_2D_tensor() + 3;
372         }
373         const unsigned int total_cross_plane_pad = _input0->info()->padding().top + _input0->info()->padding().bottom;
374         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
375     }
376 
377     if(_reinterpret_output_as_3d)
378     {
379         // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
380         unsigned int idx0;
381         if(_add_bias)
382         {
383             idx0 = 4 * num_arguments_per_2D_tensor() + 4 + (_reinterpret_input_as_3d ? 1 : 0);
384         }
385         else
386         {
387             idx0 = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
388         }
389         const unsigned int total_cross_plane_pad = _output->info()->padding().top + _output->info()->padding().bottom;
390         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
391     }
392 
393     do
394     {
395         Window slice_b = slice;
396         // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
397         // This scenario can happen when the matrix multiplication is used to perform a convolution operation
398         if(!_slide_matrix_b)
399         {
400             slice_b = slice_matrix_b;
401         }
402 
403         unsigned int idx = 0;
404         add_2D_tensor_argument(idx, _input0, slice);
405         add_2D_tensor_argument(idx, _input1, slice_b);
406         if(_add_bias)
407         {
408             add_2D_tensor_argument(idx, _input2, slice);
409         }
410         add_2D_tensor_argument(idx, _output, slice);
411         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[2]));
412         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[2]));
413         if(_add_bias)
414         {
415             _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input2->info()->strides_in_bytes()[2]));
416         }
417         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[2]));
418         enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
419     }
420     while(window.slide_window_slice_3D(slice));
421 }
422 } // namespace arm_compute
423