• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLWinogradOutputTransformKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/Helpers.h"
30 #include "arm_compute/core/IAccessWindow.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Types.h"
33 #include "arm_compute/core/Utils.h"
34 #include "arm_compute/core/Validate.h"
35 #include "arm_compute/core/Window.h"
36 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
37 #include "src/core/AccessWindowStatic.h"
38 #include "src/core/CL/CLValidate.h"
39 #include "src/core/helpers/AutoConfiguration.h"
40 #include "src/core/helpers/WindowHelpers.h"
41 
42 #include "support/StringSupport.h"
43 
44 #include <cmath>
45 
46 namespace arm_compute
47 {
48 using namespace arm_compute::misc::shape_calculator;
49 
50 namespace
51 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)52 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
53 {
54     ARM_COMPUTE_UNUSED(act_info);
55     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16);
56     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
57 
58     ARM_COMPUTE_RETURN_ERROR_ON(output->data_layout() != winograd_info.output_data_layout);
59 
60     const PadStrideInfo conv_info        = winograd_info.convolution_info;
61     const Size2D        output_tile_size = winograd_info.output_tile_size;
62     const Size2D        kernel_size      = winograd_info.kernel_size;
63     const Size2D        input_dimensions = winograd_info.input_dimensions;
64     const unsigned int  num_channels     = (winograd_info.kernel_size.width + winograd_info.output_tile_size.width - 1) * (winograd_info.kernel_size.height + winograd_info.output_tile_size.height - 1);
65 
66     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!cl_winograd_convolution_layer_supported(output_tile_size, kernel_size, winograd_info.output_data_layout), "Winograd output transform not supported");
67     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->dimension(2) != num_channels, "Wrong number of channels");
68 
69     // Compute number of elements to process in the X and Y direction
70     // Compute the number of output tiles along the x and y direction of size "output_tile_size"
71     const Size2D num_tiles = compute_winograd_convolution_tiles(input_dimensions,
72                                                                 kernel_size,
73                                                                 output_tile_size,
74                                                                 conv_info);
75 
76     ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(1) != static_cast<unsigned int>((num_tiles.area())));
77 
78     if(bias != nullptr)
79     {
80         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
81         ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
82     }
83 
84     // Checks performed when output is configured
85     if(output->total_size() != 0)
86     {
87         const TensorInfo tensor_info_output = input->clone()->set_tensor_shape(compute_winograd_output_transform_shape(*input, winograd_info));
88 
89         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &tensor_info_output);
90         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
91     }
92 
93     return Status{};
94 }
95 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * bias,ITensorInfo * output,const Size2D & output_tile_size)96 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output, const Size2D &output_tile_size)
97 {
98     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
99     ARM_COMPUTE_UNUSED(bias);
100 
101     constexpr unsigned int num_elems_processed_per_iteration = 1;
102 
103     Window win            = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
104     bool   window_changed = false;
105 
106     if(output->data_layout() == DataLayout::NCHW)
107     {
108         const int output_static_window_end_x = ceil_to_multiple(output->dimension(0), output_tile_size.width);
109         const int output_static_window_end_y = ceil_to_multiple(output->dimension(1), output_tile_size.height);
110 
111         AccessWindowRectangle input_access(input, 0, 0, num_elems_processed_per_iteration, num_elems_processed_per_iteration);
112         AccessWindowStatic    output_access(output, 0, 0, output_static_window_end_x, output_static_window_end_y);
113         window_changed = update_window_and_padding(win, input_access, output_access);
114         output->set_valid_region(ValidRegion(Coordinates(), output->tensor_shape()));
115     }
116 
117     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
118     return std::make_pair(err, win);
119 }
120 } // namespace
121 
CLWinogradOutputTransformKernel()122 CLWinogradOutputTransformKernel::CLWinogradOutputTransformKernel()
123     : _input(nullptr), _bias(nullptr), _output(nullptr), _is_nhwc(false)
124 {
125 }
126 
configure(const ICLTensor * input,const ICLTensor * bias,ICLTensor * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)127 void CLWinogradOutputTransformKernel::configure(const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
128 {
129     configure(CLKernelLibrary::get().get_compile_context(), input, bias, output, winograd_info, act_info);
130 }
131 
configure(const CLCompileContext & compile_context,const ICLTensor * input,const ICLTensor * bias,ICLTensor * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)132 void CLWinogradOutputTransformKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *bias, ICLTensor *output, const WinogradInfo &winograd_info,
133                                                 const ActivationLayerInfo &act_info)
134 {
135     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
136 
137     // Output tensor auto initialization if not yet initialized
138     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(compute_winograd_output_transform_shape(*input->info(), winograd_info)));
139 
140     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias != nullptr ? bias->info() : nullptr), output->info(), winograd_info, act_info));
141 
142     auto padding_info = get_padding_info({ input, bias, output });
143 
144     _input   = input;
145     _bias    = bias;
146     _output  = output;
147     _is_nhwc = winograd_info.output_data_layout == DataLayout::NHWC;
148 
149     // Compute num_tiles_x
150     const Size2D        input_dimensions = winograd_info.input_dimensions;
151     const Size2D        kernel_size      = winograd_info.kernel_size;
152     const Size2D        output_tile_size = winograd_info.output_tile_size;
153     const PadStrideInfo conv_info        = winograd_info.convolution_info;
154     const int           idx_width        = get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::WIDTH);
155     const int           idx_height       = get_data_layout_dimension_index(winograd_info.output_data_layout, DataLayoutDimension::HEIGHT);
156 
157     // Compute the number of output tiles along the x and y direction of size "output_tile_size"
158     const Size2D num_tiles = compute_winograd_convolution_tiles(input_dimensions,
159                                                                 kernel_size,
160                                                                 output_tile_size,
161                                                                 conv_info);
162     const size_t total_batches = output->info()->tensor_shape().total_size_upper(3);
163 
164     // Set build options
165     CLBuildOptions build_opts;
166     build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(act_info.activation())));
167     build_opts.add_option_if(act_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(act_info.a()));
168     build_opts.add_option_if(act_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(act_info.b()));
169 
170     if((output_tile_size.x() == 2) || (output_tile_size.x() == 1 && output_tile_size.y() == 2))
171     {
172         build_opts.add_option("-DVEC_SIZE=2");
173     }
174     else if((output_tile_size.x() == 4) || (output_tile_size.x() == 1 && output_tile_size.y() == 4))
175     {
176         build_opts.add_option("-DVEC_SIZE=4");
177     }
178 
179     build_opts.add_option_if(_bias != nullptr, std::string("-DHAS_BIAS"));
180     build_opts.add_option("-DNUM_TILES_X=" + support::cpp11::to_string(num_tiles.width));
181     build_opts.add_option("-DOUTPUT_TILE_W=" + support::cpp11::to_string(output_tile_size.width));
182     build_opts.add_option("-DOUTPUT_TILE_H=" + support::cpp11::to_string(output_tile_size.height));
183     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
184     build_opts.add_option("-DDST_WIDTH=" + support::cpp11::to_string(_output->info()->dimension(idx_width)));
185     build_opts.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(_output->info()->dimension(idx_height)));
186     build_opts.add_option_if(total_batches > 1, "-DSRC_DEPTH=" + support::cpp11::to_string(_input->info()->dimension(2)));
187     build_opts.add_option_if(winograd_info.kernel_size.height == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL");
188     build_opts.add_option_if(winograd_info.kernel_size.width == 1, "-DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL");
189 
190     // Create kernel
191     std::string kernel_name = "winograd_output_transform_" + output_tile_size.to_string() + "_" + kernel_size.to_string() + "_" + lower_string(string_from_data_layout(winograd_info.output_data_layout));
192     _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
193 
194     // Configure kernel window
195     auto win_config = validate_and_configure_window(input->info(), (bias != nullptr ? bias->info() : nullptr), output->info(), winograd_info.output_tile_size);
196     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
197     ICLKernel::configure_internal(win_config.second);
198 
199     // Set config_id for enabling LWS tuning
200     _config_id = kernel_name;
201     _config_id += "_";
202     _config_id += lower_string(string_from_data_type(input->info()->data_type()));
203     _config_id += "_";
204     _config_id += support::cpp11::to_string(input->info()->dimension(0));
205     _config_id += "_";
206     _config_id += support::cpp11::to_string(input->info()->dimension(1));
207     _config_id += "_";
208     _config_id += support::cpp11::to_string(output->info()->dimension(0));
209     _config_id += "_";
210     _config_id += support::cpp11::to_string(output->info()->dimension(1));
211     _config_id += "_";
212     _config_id += lower_string(string_from_data_layout(winograd_info.output_data_layout));
213 
214     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info) && _is_nhwc);
215 }
216 
validate(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)217 Status CLWinogradOutputTransformKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
218 {
219     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, (bias != nullptr ? bias->clone().get() : nullptr), output, winograd_info, act_info));
220     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), (bias != nullptr ? bias->clone().get() : nullptr), output->clone().get(), winograd_info.output_tile_size).first);
221 
222     return Status{};
223 }
224 
run(const Window & window,cl::CommandQueue & queue)225 void CLWinogradOutputTransformKernel::run(const Window &window, cl::CommandQueue &queue)
226 {
227     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
228     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
229 
230     // Collapse window
231     Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
232 
233     // Get initial windows
234     Window slice = window_collapsed.first_slice_window_4D();
235     slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
236 
237     // Setup output slice
238     Window slice_out(slice);
239     slice_out.set(Window::DimX, Window::Dimension(0, 0, 0));
240     slice_out.set(Window::DimY, Window::Dimension(0, 0, 0));
241 
242     if(_bias != nullptr)
243     {
244         unsigned int idx1 = 2 * num_arguments_per_4D_tensor();
245         Window       slice_biases;
246         slice_biases.use_tensor_dimensions(_bias->info()->tensor_shape());
247         add_1D_tensor_argument(idx1, _bias, slice_biases);
248     }
249 
250     if(_is_nhwc)
251     {
252         unsigned int idx2 = 2 * num_arguments_per_4D_tensor() + ((_bias != nullptr) ? num_arguments_per_1D_tensor() : 0);
253         _kernel.setArg(idx2, static_cast<int>(_output->info()->total_size() - _output->info()->strides_in_bytes().y()));
254     }
255 
256     do
257     {
258         unsigned int idx = 0;
259         add_4D_tensor_argument(idx, _input, slice);
260         add_4D_tensor_argument(idx, _output, slice_out);
261         enqueue(queue, *this, slice, lws_hint());
262     }
263     while(window.slide_window_slice_3D(slice) && window.slide_window_slice_3D(slice_out));
264 }
265 } // namespace arm_compute
266