• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/GLES_COMPUTE/kernels/GCPoolingLayerKernel.h"
25 
26 #include "arm_compute/core/GLES_COMPUTE/GCHelpers.h"
27 #include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h"
28 #include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
29 #include "arm_compute/core/GLES_COMPUTE/OpenGLES.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Utils.h"
33 #include "arm_compute/core/Validate.h"
34 #include "arm_compute/core/Window.h"
35 #include "src/core/AccessWindowStatic.h"
36 #include "src/core/helpers/AutoConfiguration.h"
37 #include "src/core/helpers/WindowHelpers.h"
38 #include "support/StringSupport.h"
39 
40 #include <set>
41 #include <string>
42 #include <tuple>
43 
44 using namespace arm_compute;
45 
46 namespace
47 {
48 // Internal window config info
49 using GCPoolingConfig = std::pair<unsigned int, BorderSize>; //num_elems_processed_per_iteration, border_size
50 
auto_init(const ITensorInfo * input,ITensorInfo * output,unsigned int pooled_w,unsigned int pooled_h)51 void auto_init(const ITensorInfo *input, ITensorInfo *output, unsigned int pooled_w, unsigned int pooled_h)
52 {
53     TensorShape output_shape{ input->tensor_shape() };
54     output_shape.set(0, pooled_w);
55     output_shape.set(1, pooled_h);
56 
57     auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));
58 }
59 
validate_arguments(const ITensorInfo * input,const ITensorInfo * output,const PoolingLayerInfo & pool_info,const ITensorInfo * indices)60 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
61 {
62     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
63     ARM_COMPUTE_RETURN_ERROR_ON_MSG(indices, "Indices not supported in GLES backend");
64     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
65     ARM_COMPUTE_RETURN_ERROR_ON_MSG((is_data_type_quantized_asymmetric(input->data_type()) && pool_info.pool_type == PoolingType::L2),
66                                     "Unsupported combination of parameters!");
67     ARM_COMPUTE_RETURN_ERROR_ON(!pool_info.pad_stride_info.padding_is_symmetric());
68 
69     const bool         is_global_pooling = pool_info.is_global_pooling;
70     const unsigned int pool_size         = is_global_pooling ? input->tensor_shape().x() : pool_info.pool_size.width;
71 
72     ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_global_pooling && (input->tensor_shape().x() != input->tensor_shape().y()),
73                                     "Global pooling is supported only with rectangular inputs!");
74     ARM_COMPUTE_RETURN_ERROR_ON_MSG(!is_global_pooling && ((pool_info.pad_stride_info.pad().first >= pool_size) || (pool_info.pad_stride_info.pad().second >= pool_size)),
75                                     "Invalid pool size and pool pad combination!");
76     ARM_COMPUTE_RETURN_ERROR_ON_MSG(pool_info.pool_size.width != pool_info.pool_size.height, "Invalid Pool size, width not equal to height!");
77 
78     // Checks performed when output is configured
79     if(output->total_size() != 0)
80     {
81         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
82 
83         unsigned int pooled_w = 0;
84         unsigned int pooled_h = 0;
85         std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
86                                                          input->dimension(1),
87                                                          pool_size,
88                                                          pool_size,
89                                                          pool_info.pad_stride_info);
90         ARM_COMPUTE_RETURN_ERROR_ON_MSG((output->dimension(0) != pooled_w) || (output->dimension(1) != pooled_h),
91                                         "Invalid output pooling dimensions!");
92     }
93 
94     return Status{};
95 }
96 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * output,const PoolingLayerInfo & pool_info)97 std::tuple<Status, Window, GCPoolingConfig> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output, const PoolingLayerInfo &pool_info)
98 {
99     int                 pool_pad_x      = 0;
100     int                 pool_pad_y      = 0;
101     int                 pool_stride_x   = 0;
102     int                 pool_stride_y   = 0;
103     unsigned int        pooled_w        = 0;
104     unsigned int        pooled_h        = 0;
105     int                 pool_size       = pool_info.pool_size.width;
106     const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
107     std::tie(pool_pad_x, pool_pad_y)       = pad_stride_info.pad();
108     std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
109 
110     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
111 
112     // Update pool size in case of global pooling
113     pool_size = pool_info.is_global_pooling ? input->dimension(0) : pool_size;
114 
115     // Check output dimensions
116     std::tie(pooled_w, pooled_h) = scaled_dimensions(input->dimension(0),
117                                                      input->dimension(1),
118                                                      pool_size,
119                                                      pool_size,
120                                                      pad_stride_info);
121 
122     auto_init(input, output, pooled_w, pooled_h);
123 
124     BorderSize border_size = BorderSize(pool_pad_y, pool_pad_x);
125 
126     const int input_width  = input->dimension(0);
127     const int input_height = input->dimension(1);
128 
129     unsigned int num_elems_processed_per_iteration = 1;
130 
131     // Create kernel
132     if(pool_size == 3)
133     {
134         // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenGLES kernel where
135         // each thread computes 4 output elements
136         const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3);
137 
138         int num_elems_read_per_iteration = pool_size;
139 
140         if(input->data_type() == DataType::F32)
141         {
142             if(is_pool3x3_stride_le3)
143             {
144                 // Change the number of elements processed and number of elements read per iteration for pooling 3x3 with stride less equal than 3
145                 num_elems_processed_per_iteration = 4;
146                 num_elems_read_per_iteration      = pool_size * (pool_stride_x + 1);
147             }
148         }
149         else
150         {
151             if(is_pool3x3_stride_le3)
152             {
153                 num_elems_processed_per_iteration = 4;
154             }
155             else
156             {
157                 num_elems_processed_per_iteration = 2;
158             }
159         }
160 
161         const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + num_elems_read_per_iteration) - input_width;
162         const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
163 
164         border_size.right  = std::max(upper_bound_w, pool_pad_x);
165         border_size.bottom = std::max(upper_bound_h, pool_pad_y);
166     }
167     else // Run general case
168     {
169         if(input->data_type() == DataType::F32)
170         {
171             num_elems_processed_per_iteration = 1;
172         }
173         else
174         {
175             num_elems_processed_per_iteration = 2;
176         }
177 
178         const int upper_bound_w = ((pooled_w - 1) * pool_stride_x - pool_pad_x + pool_size) - input_width;
179         const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_y + pool_size) - input_height;
180 
181         border_size.right  = std::max(upper_bound_w, pool_pad_x);
182         border_size.bottom = std::max(upper_bound_h, pool_pad_y);
183     }
184     // Configure kernel window
185     Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
186 
187     if(input->data_type() == DataType::F32)
188     {
189         AccessWindowStatic     input_access(input, -pool_pad_x, -pool_pad_y, input_width + border_size.right, input_height + border_size.bottom);
190         AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
191         bool                   window_changed = update_window_and_padding(win, input_access, output_access);
192         output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
193         Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
194         return std::make_tuple(err, win, GCPoolingConfig(num_elems_processed_per_iteration, border_size));
195     }
196     else
197     {
198         // Calculate output right and bottom border
199         const int output_width          = output->dimension(0);
200         const int output_height         = output->dimension(1);
201         const int output_padding_right  = ceil_to_multiple(output_width, num_elems_processed_per_iteration) - output_width;
202         const int output_padding_bottom = ceil_to_multiple(output_height, 1) - output_height;
203 
204         const int input_total_width    = std::max(int(input->padding().left), int(pool_pad_x)) + input_width + std::max(int(input->padding().right), int(pool_pad_x));
205         const int input_padding_right  = ceil_to_multiple(input_total_width, num_elems_processed_per_iteration) - input_width - pool_pad_x;
206         const int input_total_height   = std::max(int(input->padding().top), int(pool_pad_y)) + input_height + std::max(int(input->padding().bottom), int(pool_pad_y));
207         const int input_padding_bottom = input_total_height - input_height - pool_pad_y;
208 
209         // Configure kernel window
210         AccessWindowStatic input_access(input, -pool_pad_x, -pool_pad_y, input_width + input_padding_right, input_height + input_padding_bottom);
211         AccessWindowStatic output_access(output, 0, 0, output_width + output_padding_right, output_height + output_padding_bottom);
212         bool               window_changed = update_window_and_padding(win, input_access, output_access);
213         output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
214         Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
215         return std::make_tuple(err, win, GCPoolingConfig(num_elems_processed_per_iteration, border_size));
216     }
217 }
218 } // namespace
219 
GCPoolingLayerKernel()220 GCPoolingLayerKernel::GCPoolingLayerKernel()
221     : _input(nullptr), _output(nullptr), _indices(nullptr), _pool_info(), _border_size(0), _num_elems_processed_per_iteration(1)
222 {
223 }
224 
border_size() const225 BorderSize GCPoolingLayerKernel::border_size() const
226 {
227     return _border_size;
228 }
229 
configure(const IGCTensor * input,IGCTensor * output,const PoolingLayerInfo & pool_info,IGCTensor * indices)230 void GCPoolingLayerKernel::configure(const IGCTensor *input, IGCTensor *output, const PoolingLayerInfo &pool_info, IGCTensor *indices)
231 {
232     int                 pool_pad_x      = 0;
233     int                 pool_pad_y      = 0;
234     int                 pool_stride_x   = 0;
235     int                 pool_stride_y   = 0;
236     unsigned int        pooled_w        = 0;
237     unsigned int        pooled_h        = 0;
238     const PoolingType   pool_type       = pool_info.pool_type;
239     int                 pool_size       = pool_info.pool_size.width;
240     const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
241     const bool          exclude_padding = pool_info.exclude_padding;
242     std::tie(pool_pad_x, pool_pad_y)       = pad_stride_info.pad();
243     std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
244 
245     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
246 
247     // Update pool size in case of global pooling
248     pool_size = pool_info.is_global_pooling ? input->info()->dimension(0) : pool_size;
249 
250     // Check output dimensions
251     std::tie(pooled_w, pooled_h) = scaled_dimensions(input->info()->dimension(0),
252                                                      input->info()->dimension(1),
253                                                      pool_size,
254                                                      pool_size,
255                                                      pad_stride_info);
256 
257     auto_init(input->info(), output->info(), pooled_w, pooled_h);
258 
259     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), pool_info, (indices) ? indices->info() : nullptr));
260 
261     // Set instance variables
262     _input     = input;
263     _output    = output;
264     _pool_info = pool_info;
265     _indices   = indices;
266     // Set build options
267     std::set<std::string> build_opts;
268     build_opts.emplace("#define LOCAL_SIZE_X " + support::cpp11::to_string(1));
269     build_opts.emplace("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1));
270     build_opts.emplace("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1));
271     if(input->info()->data_type() == DataType::F32)
272     {
273         build_opts.insert("#define DATA_TYPE_FP32");
274     }
275     else
276     {
277         build_opts.insert("#define DATA_TYPE_FP16");
278     }
279     if(exclude_padding)
280     {
281         build_opts.emplace("#define EXCLUDE_PADDING");
282     }
283     build_opts.emplace(("#define POOL_" + string_from_pooling_type(pool_type)));
284     build_opts.emplace(("#define STRIDE_X " + support::cpp11::to_string(pool_stride_x)));
285     build_opts.emplace(("#define MAX_WIDTH " + support::cpp11::to_string(input->info()->dimension(0) + (exclude_padding ? 0 : pool_pad_x))));
286     build_opts.emplace(("#define MAX_HEIGHT " + support::cpp11::to_string(input->info()->dimension(1) + (exclude_padding ? 0 : pool_pad_y))));
287     build_opts.emplace(("#define STRIDE_Y " + support::cpp11::to_string(pool_stride_y)));
288     build_opts.emplace(("#define PAD_X " + support::cpp11::to_string(pool_pad_x)));
289     build_opts.emplace(("#define PAD_Y " + support::cpp11::to_string(pool_pad_y)));
290 
291     // Create kernel
292     if((pool_size == 2) || (pool_size == 3) || (pool_size == 7))
293     {
294         // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenGLES kernel where
295         // each thread computes 4 output elements
296         const bool is_pool3x3_stride_le3 = (pool_size == 3) && (pool_stride_x <= 3);
297 
298         std::string kernel_name = "pooling_layer_" + support::cpp11::to_string(pool_size);
299         if(is_pool3x3_stride_le3)
300         {
301             build_opts.insert("#define POOLING_LAYER_3_OPTIMIZED");
302             _kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel(kernel_name + "_optimized", build_opts));
303         }
304         else
305         {
306             build_opts.insert("#define POOLING_LAYER_" + support::cpp11::to_string(pool_size));
307             _kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel(kernel_name, build_opts));
308         }
309     }
310     else // Run general case
311     {
312         build_opts.emplace(("#define POOL_SIZE " + support::cpp11::to_string(pool_size)));
313 
314         build_opts.insert("#define POOLING_LAYER_N");
315         _kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel("pooling_layer_n", build_opts));
316     }
317     // Configure kernel window
318     auto win_config = validate_and_configure_window(input->info(), output->info(), pool_info);
319     ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
320 
321     IGCKernel::configure(std::get<1>(win_config));
322     GCPoolingConfig pooling_config     = std::get<2>(win_config);
323     _num_elems_processed_per_iteration = pooling_config.first;
324     _border_size                       = pooling_config.second;
325 }
326 
validate(const ITensorInfo * input,const ITensorInfo * output,const PoolingLayerInfo & pool_info,const ITensorInfo * indices)327 Status GCPoolingLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
328 {
329     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, pool_info, indices));
330     ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get(), pool_info)));
331 
332     return Status{};
333 }
334 
run(const Window & window)335 void GCPoolingLayerKernel::run(const Window &window)
336 {
337     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
338     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
339 
340     unsigned int pool_pad_x;
341     unsigned int pool_pad_y;
342     unsigned int pool_stride_x;
343     unsigned int pool_stride_y;
344     std::tie(pool_pad_x, pool_pad_y)       = _pool_info.pad_stride_info.pad();
345     std::tie(pool_stride_x, pool_stride_y) = _pool_info.pad_stride_info.stride();
346 
347     _kernel.use();
348 
349     _output->set_needs_shifting(true);
350 
351     Window window_collapsed = window.collapse_if_possible(IGCKernel::window(), Window::DimZ);
352 
353     Window slice         = window_collapsed.first_slice_window_3D();
354     Window slice_in_orig = window_collapsed.first_slice_window_3D();
355 
356     slice.shift(Window::DimX, -(_output->info()->padding()).left);
357 
358     do
359     {
360         // Upsample input by pool size
361         Window in_slice(slice_in_orig); // NOLINT
362         in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - pool_pad_x, in_slice.x().end() * pool_stride_x, pool_stride_x * _num_elems_processed_per_iteration));
363         in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - pool_pad_y, in_slice.y().end() * pool_stride_y, pool_stride_y));
364 
365         // Set inputs
366         unsigned int idx = 0;
367         add_3D_tensor_argument(idx, _input, 1, in_slice);
368         add_3D_tensor_argument(idx, _output, 2, slice);
369 
370         _kernel.update_shader_params();
371         enqueue(*this, slice);
372     }
373     while(window_collapsed.slide_window_slice_3D(slice) && window_collapsed.slide_window_slice_3D(slice_in_orig));
374 }
375