1/* 2 * Copyright (c) 2016-2020 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24#include <cmath> 25#include <limits> 26 27#ifndef M_PI 28#define M_PI (3.14159265358979323846) 29#endif // M_PI 30 31namespace arm_compute 32{ 33/** Exponent polynomial coefficients */ 34const std::array<float32x4_t, 8> exp_tab = 35{ 36 { 37 vdupq_n_f32(1.f), 38 vdupq_n_f32(0.0416598916054f), 39 vdupq_n_f32(0.500000596046f), 40 vdupq_n_f32(0.0014122662833f), 41 vdupq_n_f32(1.00000011921f), 42 vdupq_n_f32(0.00833693705499f), 43 vdupq_n_f32(0.166665703058f), 44 vdupq_n_f32(0.000195780929062f), 45 } 46}; 47 48/** Logarithm polynomial coefficients */ 49const std::array<float32x4_t, 8> log_tab = 50{ 51 { 52 vdupq_n_f32(-2.29561495781f), 53 vdupq_n_f32(-2.47071170807f), 54 vdupq_n_f32(-5.68692588806f), 55 vdupq_n_f32(-0.165253549814f), 56 vdupq_n_f32(5.17591238022f), 57 vdupq_n_f32(0.844007015228f), 58 vdupq_n_f32(4.58445882797f), 59 vdupq_n_f32(0.0141278216615f), 60 } 61}; 62 63/** Sin polynomial coefficients */ 64constexpr float te_sin_coeff2 = 0.166666666666f; // 1/(2*3) 65constexpr float te_sin_coeff3 = 0.05f; // 1/(4*5) 66constexpr float te_sin_coeff4 = 0.023809523810f; // 1/(6*7) 67constexpr float te_sin_coeff5 = 0.013888888889f; // 1/(8*9) 68 69#ifndef DOXYGEN_SKIP_THIS 70inline float32x4_t vfloorq_f32(float32x4_t val) 71{ 72 static const float32x4_t CONST_1 = vdupq_n_f32(1.f); 73 74 const int32x4_t z = vcvtq_s32_f32(val); 75 const float32x4_t r = vcvtq_f32_s32(z); 76 77 return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, CONST_1), r); 78} 79 80inline float32x4_t vroundq_rte_f32(float32x4_t val) 81{ 82#ifdef __aarch64__ 83 return vrndnq_f32(val); 84#else // __aarch64__ 85 static const float32x4_t CONST_HALF_FLOAT = vdupq_n_f32(0.5f); 86 static const float32x4_t CONST_1_FLOAT = vdupq_n_f32(1.f); 87 static const int32x4_t CONST_1_INT = vdupq_n_s32(1); 88 const float32x4_t floor_val = vfloorq_f32(val); 89 const float32x4_t diff = vsubq_f32(val, floor_val); 90 91 /* 92 * Select the floor value when (diff<0.5 || (diff==0.5 && floor_val%2==0). 93 * This condition is checked by vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT) ,vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT) , vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT),CONST_1_INT)))) 94 */ 95 96 return vbslq_f32(vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT), vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT), vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT), CONST_1_INT)))), 97 floor_val, vaddq_f32(floor_val, CONST_1_FLOAT)); 98#endif // __aarch64__ 99} 100 101inline float32x2_t vinvsqrt_f32(float32x2_t x) 102{ 103 float32x2_t sqrt_reciprocal = vrsqrte_f32(x); 104 sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); 105 sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); 106 107 return sqrt_reciprocal; 108} 109 110inline float32x4_t vinvsqrtq_f32(float32x4_t x) 111{ 112 float32x4_t sqrt_reciprocal = vrsqrteq_f32(x); 113 sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); 114 sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); 115 116 return sqrt_reciprocal; 117} 118 119inline float32x2_t vinv_f32(float32x2_t x) 120{ 121 float32x2_t recip = vrecpe_f32(x); 122 recip = vmul_f32(vrecps_f32(x, recip), recip); 123 recip = vmul_f32(vrecps_f32(x, recip), recip); 124 return recip; 125} 126 127inline float32x4_t vinvq_f32(float32x4_t x) 128{ 129 float32x4_t recip = vrecpeq_f32(x); 130 recip = vmulq_f32(vrecpsq_f32(x, recip), recip); 131 recip = vmulq_f32(vrecpsq_f32(x, recip), recip); 132 return recip; 133} 134 135inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs) 136{ 137 float32x4_t A = vmlaq_f32(coeffs[0], coeffs[4], x); 138 float32x4_t B = vmlaq_f32(coeffs[2], coeffs[6], x); 139 float32x4_t C = vmlaq_f32(coeffs[1], coeffs[5], x); 140 float32x4_t D = vmlaq_f32(coeffs[3], coeffs[7], x); 141 float32x4_t x2 = vmulq_f32(x, x); 142 float32x4_t x4 = vmulq_f32(x2, x2); 143 float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4); 144 return res; 145} 146 147inline float32x4_t vexpq_f32(float32x4_t x) 148{ 149 static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2) 150 static const float32x4_t CONST_INV_LN2 = vdupq_n_f32(1.4426950408f); // 1/ln(2) 151 static const float32x4_t CONST_INF = vdupq_n_f32(std::numeric_limits<float>::infinity()); 152 static const float32x4_t CONST_MAX_INPUT = vdupq_n_f32(88.7f); 153 static const float32x4_t CONST_0 = vdupq_n_f32(0.f); 154 static const int32x4_t CONST_NEGATIVE_126 = vdupq_n_s32(-126); 155 156 // Perform range reduction [-log(2),log(2)] 157 int32x4_t m = vcvtq_s32_f32(vmulq_f32(x, CONST_INV_LN2)); 158 float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), CONST_LN2); 159 160 // Polynomial Approximation 161 float32x4_t poly = vtaylor_polyq_f32(val, exp_tab); 162 163 // Reconstruct 164 poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23))); 165 poly = vbslq_f32(vcltq_s32(m, CONST_NEGATIVE_126), CONST_0, poly); // Handle underflow 166 poly = vbslq_f32(vcgtq_f32(x, CONST_MAX_INPUT), CONST_INF, poly); // Handle overflow 167 168 return poly; 169} 170 171inline float32x4_t vlogq_f32(float32x4_t x) 172{ 173 static const int32x4_t CONST_127 = vdupq_n_s32(127); // 127 174 static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2) 175 176 // Extract exponent 177 int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127); 178 float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23))); 179 180 // Polynomial Approximation 181 float32x4_t poly = vtaylor_polyq_f32(val, log_tab); 182 183 // Reconstruct 184 poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2); 185 186 return poly; 187} 188 189inline float32x4_t vtanhq_f32(float32x4_t val) 190{ 191 static const float32x4_t CONST_1 = vdupq_n_f32(1.f); 192 static const float32x4_t CONST_2 = vdupq_n_f32(2.f); 193 static const float32x4_t CONST_MIN_TANH = vdupq_n_f32(-10.f); 194 static const float32x4_t CONST_MAX_TANH = vdupq_n_f32(10.f); 195 196 float32x4_t x = vminq_f32(vmaxq_f32(val, CONST_MIN_TANH), CONST_MAX_TANH); 197 float32x4_t exp2x = vexpq_f32(vmulq_f32(CONST_2, x)); 198 float32x4_t num = vsubq_f32(exp2x, CONST_1); 199 float32x4_t den = vaddq_f32(exp2x, CONST_1); 200 float32x4_t tanh = vmulq_f32(num, vinvq_f32(den)); 201 return tanh; 202} 203 204inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n) 205{ 206 return vexpq_f32(vmulq_f32(n, vlogq_f32(val))); 207} 208 209inline float32x4_t vsinq_f32(float32x4_t val) 210{ 211 const float32x4_t pi_v = vdupq_n_f32(M_PI); 212 const float32x4_t pio2_v = vdupq_n_f32(M_PI / 2); 213 const float32x4_t ipi_v = vdupq_n_f32(1 / M_PI); 214 215 //Find positive or negative 216 const int32x4_t c_v = vabsq_s32(vcvtq_s32_f32(vmulq_f32(val, ipi_v))); 217 const uint32x4_t sign_v = vcleq_f32(val, vdupq_n_f32(0)); 218 const uint32x4_t odd_v = vandq_u32(vreinterpretq_u32_s32(c_v), vdupq_n_u32(1)); 219 220 uint32x4_t neg_v = veorq_u32(odd_v, sign_v); 221 222 //Modulus a - (n * int(a*(1/n))) 223 float32x4_t ma = vsubq_f32(vabsq_f32(val), vmulq_f32(pi_v, vcvtq_f32_s32(c_v))); 224 const uint32x4_t reb_v = vcgeq_f32(ma, pio2_v); 225 226 //Rebase a between 0 and pi/2 227 ma = vbslq_f32(reb_v, vsubq_f32(pi_v, ma), ma); 228 229 //Taylor series 230 const float32x4_t ma2 = vmulq_f32(ma, ma); 231 232 //2nd elem: x^3 / 3! 233 float32x4_t elem = vmulq_f32(vmulq_f32(ma, ma2), vdupq_n_f32(te_sin_coeff2)); 234 float32x4_t res = vsubq_f32(ma, elem); 235 236 //3rd elem: x^5 / 5! 237 elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff3)); 238 res = vaddq_f32(res, elem); 239 240 //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val) 241 elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff4)); 242 res = vsubq_f32(res, elem); 243 244 //5th elem: x^9 / 9! 245 elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff5)); 246 res = vaddq_f32(res, elem); 247 248 //Change of sign 249 neg_v = vshlq_n_u32(neg_v, 31); 250 res = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(res), neg_v)); 251 return res; 252} 253 254inline float32x2_t vsin_f32(float32x2_t val) 255{ 256 const float32x2_t pi_v = vdup_n_f32(M_PI); 257 const float32x2_t pio2_v = vdup_n_f32(M_PI / 2); 258 const float32x2_t ipi_v = vdup_n_f32(1 / M_PI); 259 260 //Find positive or negative 261 const int32x2_t c_v = vabs_s32(vcvt_s32_f32(vmul_f32(val, ipi_v))); 262 const uint32x2_t sign_v = vcle_f32(val, vdup_n_f32(0)); 263 const uint32x2_t odd_v = vand_u32(vreinterpret_u32_s32(c_v), vdup_n_u32(1)); 264 265 uint32x2_t neg_v = veor_u32(odd_v, sign_v); 266 267 //Modulus a - (n * int(a*(1/n))) 268 float32x2_t ma = vsub_f32(vabs_f32(val), vmul_f32(pi_v, vcvt_f32_s32(c_v))); 269 const uint32x2_t reb_v = vcge_f32(ma, pio2_v); 270 271 //Rebase a between 0 and pi/2 272 ma = vbsl_f32(reb_v, vsub_f32(pi_v, ma), ma); 273 274 //Taylor series 275 const float32x2_t ma2 = vmul_f32(ma, ma); 276 277 //2nd elem: x^3 / 3! 278 float32x2_t elem = vmul_f32(vmul_f32(ma, ma2), vdup_n_f32(te_sin_coeff2)); 279 float32x2_t res = vsub_f32(ma, elem); 280 281 //3rd elem: x^5 / 5! 282 elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff3)); 283 res = vadd_f32(res, elem); 284 285 //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val) 286 elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff4)); 287 res = vsub_f32(res, elem); 288 289 //5th elem: x^9 / 9! 290 elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff5)); 291 res = vadd_f32(res, elem); 292 293 //Change of sign 294 neg_v = vshl_n_u32(neg_v, 31); 295 res = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(res), neg_v)); 296 return res; 297} 298 299#endif /* DOXYGEN_SKIP_THIS */ 300 301inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int32x4_t exponent) 302{ 303 const int32x4_t shift_vec = vnegq_s32(exponent); 304 const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31); 305 const int32x4_t fixed_up_x = vqaddq_s32(x, fixup); 306 return vrshlq_s32(fixed_up_x, shift_vec); 307} 308 309inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent) 310{ 311 const int32x4_t shift_vec = vdupq_n_s32(-exponent); 312 const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31); 313 const int32x4_t fixed_up_x = vqaddq_s32(x, fixup); 314 return vrshlq_s32(fixed_up_x, shift_vec); 315} 316 317inline int32_t rounding_divide_by_pow2(int32_t x, int exponent) 318{ 319 const int32_t mask = (1 << exponent) - 1; 320 const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0); 321 return (x >> exponent) + ((x & mask) > threshold ? 1 : 0); 322} 323 324inline float32x4x4_t convert_uint8x16_to_float32x4x4(const uint8x16_t &in) 325{ 326 float32x4x4_t out; 327 328 const auto tmp1 = vmovl_u8(vget_low_u8(in)); 329 out.val[0] = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp1))); 330 out.val[1] = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp1))); 331 332 const auto tmp2 = vmovl_u8(vget_high_u8(in)); 333 out.val[2] = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp2))); 334 out.val[3] = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp2))); 335 return out; 336} 337 338inline float32x4x4_t convert_int8x16_to_float32x4x4(const int8x16_t &in) 339{ 340 float32x4x4_t out; 341 342 const auto tmp1 = vmovl_s8(vget_low_s8(in)); 343 out.val[0] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp1))); 344 out.val[1] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp1))); 345 346 const auto tmp2 = vmovl_s8(vget_high_s8(in)); 347 out.val[2] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp2))); 348 out.val[3] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp2))); 349 return out; 350} 351 352template <> 353inline float32x4x4_t convert_to_float32x4x4(const uint8x16_t &in) 354{ 355 return convert_uint8x16_to_float32x4x4(in); 356} 357 358template <> 359inline float32x4x4_t convert_to_float32x4x4(const int8x16_t &in) 360{ 361 return convert_int8x16_to_float32x4x4(in); 362} 363 364inline void convert_float32x4x3_to_uint8x8x3(const float32x4x3_t &in1, const float32x4x3_t &in2, uint8x8x3_t &out) 365{ 366 out.val[0] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[0])), 367 vqmovn_u32(vcvtq_u32_f32(in2.val[0])))); 368 out.val[1] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[1])), 369 vqmovn_u32(vcvtq_u32_f32(in2.val[1])))); 370 out.val[2] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[2])), 371 vqmovn_u32(vcvtq_u32_f32(in2.val[2])))); 372} 373 374inline void convert_float32x4x4_to_uint8x16(const float32x4x4_t &in, uint8x16_t &out) 375{ 376 const auto low = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[0])), 377 vqmovn_u32(vcvtq_u32_f32(in.val[1]))); 378 const auto high = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[2])), 379 vqmovn_u32(vcvtq_u32_f32(in.val[3]))); 380 out = vcombine_u8(vqmovn_u16(low), vqmovn_u16(high)); 381} 382 383inline void convert_float32x4x4_to_int8x16(const float32x4x4_t &in, int8x16_t &out) 384{ 385 const auto low = vcombine_s16(vqmovn_s32(vcvtq_s32_f32(in.val[0])), 386 vqmovn_s32(vcvtq_s32_f32(in.val[1]))); 387 const auto high = vcombine_s16(vqmovn_s32(vcvtq_s32_f32(in.val[2])), 388 vqmovn_s32(vcvtq_s32_f32(in.val[3]))); 389 out = vcombine_s8(vqmovn_s16(low), vqmovn_s16(high)); 390} 391 392#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC 393/** Exponent polynomial coefficients */ 394/** Logarithm polynomial coefficients */ 395#ifndef DOXYGEN_SKIP_THIS 396inline float16x8_t vfloorq_f16(float16x8_t val) 397{ 398 static const float16x8_t CONST_1 = vdupq_n_f16(1.f); 399 400 const int16x8_t z = vcvtq_s16_f16(val); 401 const float16x8_t r = vcvtq_f16_s16(z); 402 403 return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, CONST_1), r); 404} 405 406inline float16x8_t vroundq_rte_f16(float16x8_t val) 407{ 408 return vrndnq_f16(val); 409} 410 411inline float16x4_t vinvsqrt_f16(float16x4_t x) 412{ 413 float16x4_t sqrt_reciprocal = vrsqrte_f16(x); 414 sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); 415 sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); 416 return sqrt_reciprocal; 417} 418 419inline float16x8_t vinvsqrtq_f16(float16x8_t x) 420{ 421 float16x8_t sqrt_reciprocal = vrsqrteq_f16(x); 422 sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); 423 sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); 424 return sqrt_reciprocal; 425} 426 427inline float16x4_t vinv_f16(float16x4_t x) 428{ 429 float16x4_t recip = vrecpe_f16(x); 430 recip = vmul_f16(vrecps_f16(x, recip), recip); 431 recip = vmul_f16(vrecps_f16(x, recip), recip); 432 return recip; 433} 434 435inline float16x8_t vinvq_f16(float16x8_t x) 436{ 437 float16x8_t recip = vrecpeq_f16(x); 438 recip = vmulq_f16(vrecpsq_f16(x, recip), recip); 439 recip = vmulq_f16(vrecpsq_f16(x, recip), recip); 440 return recip; 441} 442 443inline float16x8_t vtanhq_f16(float16x8_t val) 444{ 445 const float16x8_t CONST_1 = vdupq_n_f16(1.f); 446 const float16x8_t CONST_2 = vdupq_n_f16(2.f); 447 const float16x8_t CONST_MIN_TANH = vdupq_n_f16(-10.f); 448 const float16x8_t CONST_MAX_TANH = vdupq_n_f16(10.f); 449 450 const float16x8_t x = vminq_f16(vmaxq_f16(val, CONST_MIN_TANH), CONST_MAX_TANH); 451 const float16x8_t exp2x = vexpq_f16(vmulq_f16(CONST_2, x)); 452 const float16x8_t num = vsubq_f16(exp2x, CONST_1); 453 const float16x8_t den = vaddq_f16(exp2x, CONST_1); 454 const float16x8_t tanh = vmulq_f16(num, vinvq_f16(den)); 455 return tanh; 456} 457 458inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const std::array<float16x8_t, 8> &coeffs) 459{ 460 const float16x8_t A = vaddq_f16(coeffs[0], vmulq_f16(coeffs[4], x)); 461 const float16x8_t B = vaddq_f16(coeffs[2], vmulq_f16(coeffs[6], x)); 462 const float16x8_t C = vaddq_f16(coeffs[1], vmulq_f16(coeffs[5], x)); 463 const float16x8_t D = vaddq_f16(coeffs[3], vmulq_f16(coeffs[7], x)); 464 const float16x8_t x2 = vmulq_f16(x, x); 465 const float16x8_t x4 = vmulq_f16(x2, x2); 466 const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4)); 467 return res; 468} 469 470inline float16x8_t vexpq_f16(float16x8_t x) 471{ 472 // TODO (COMPMID-1535) : Revisit FP16 approximations 473 const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x)); 474 const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x)); 475 476 const float16x8_t res = vcombine_f16(vcvt_f16_f32(vexpq_f32(x_low)), vcvt_f16_f32(vexpq_f32(x_high))); 477 return res; 478} 479 480inline float16x8_t vlogq_f16(float16x8_t x) 481{ 482 // TODO (COMPMID-1535) : Revisit FP16 approximations 483 const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x)); 484 const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x)); 485 486 const float16x8_t res = vcombine_f16(vcvt_f16_f32(vlogq_f32(x_low)), vcvt_f16_f32(vlogq_f32(x_high))); 487 return res; 488} 489 490inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n) 491{ 492 // TODO (giaiod01) - COMPMID-1535 493 float32x4_t n0_f32 = vcvt_f32_f16(vget_low_f16(n)); 494 float32x4_t n1_f32 = vcvt_f32_f16(vget_high_f16(n)); 495 float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val)); 496 float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val)); 497 498 float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32))); 499 float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32))); 500 501 return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32)); 502} 503 504inline float16x8_t vsinq_f16(float16x8_t val) 505{ 506 const float32x4_t val_high = vcvt_f32_f16(vget_high_f16(val)); 507 const float32x4_t val_low = vcvt_f32_f16(vget_low_f16(val)); 508 509 const float32x4_t res_high = vsinq_f32(val_high); 510 const float32x4_t res_low = vsinq_f32(val_low); 511 512 return vcombine_f16(vcvt_f16_f32(res_low), vcvt_f16_f32(res_high)); 513} 514 515inline float16x4_t vsin_f16(float16x4_t val) 516{ 517 const float32x4_t val_f32 = vcvt_f32_f16(val); 518 const float32x2_t val_high = vget_high_f32(val_f32); 519 const float32x2_t val_low = vget_low_f32(val_f32); 520 521 const float32x2_t res_high = vsin_f32(val_high); 522 const float32x2_t res_low = vsin_f32(val_low); 523 524 return vcvt_f16_f32(vcombine_f32(res_low, res_high)); 525} 526 527#endif /* DOXYGEN_SKIP_THIS */ 528#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ 529} // namespace arm_compute 530