• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEDequantizationLayerKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/Utils.h"
29 #include "arm_compute/core/Validate.h"
30 #include "arm_compute/core/Window.h"
31 #include "src/core/AccessWindowStatic.h"
32 #include "src/core/CPP/Validate.h"
33 #include "src/core/NEON/NEAsymm.h"
34 #include "src/core/NEON/NESymm.h"
35 #include "src/core/NEON/wrapper/wrapper.h"
36 #include "src/core/helpers/AutoConfiguration.h"
37 #include "src/core/helpers/WindowHelpers.h"
38 
39 #include <arm_neon.h>
40 
41 namespace arm_compute
42 {
43 namespace
44 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * output)45 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output)
46 {
47     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
48     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::QSYMM8, DataType::QSYMM16);
49 
50     if(output->tensor_shape().total_size() > 0)
51     {
52         ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(output);
53         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F16, DataType::F32);
54         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
55     }
56 
57     return Status{};
58 }
59 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * output)60 std::tuple<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
61 {
62     // Configure kernel window
63     Window win = calculate_max_window(*input, Steps());
64 
65     // Output tensor auto initialization if not yet initialized
66     auto_init_if_empty(*output, input->tensor_shape(), 1, DataType::F32);
67 
68     // NEDequantizationLayerKernel doesn't need padding so update_window_and_padding() can be skipped
69     Coordinates coord;
70     coord.set_num_dimensions(output->num_dimensions());
71     output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
72 
73     return std::make_tuple(Status{}, win);
74 }
75 
76 template <typename T>
store_result(T * ptr,const float32x4x4_t & v)77 inline void store_result(T *ptr, const float32x4x4_t &v)
78 {
79     ARM_COMPUTE_UNUSED(ptr, v);
80 }
81 
82 template <>
store_result(float * ptr,const float32x4x4_t & v)83 inline void store_result<float>(float *ptr, const float32x4x4_t &v)
84 {
85     wrapper::vstore(ptr, v.val[0]);
86     wrapper::vstore(ptr + 4, v.val[1]);
87     wrapper::vstore(ptr + 8, v.val[2]);
88     wrapper::vstore(ptr + 12, v.val[3]);
89 }
90 
91 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
92 template <>
store_result(float16_t * ptr,const float32x4x4_t & v)93 inline void store_result<float16_t>(float16_t *ptr, const float32x4x4_t &v)
94 {
95     wrapper::vstore(ptr, vcombine_f16(vcvt_f16_f32(v.val[0]), vcvt_f16_f32(v.val[1])));
96     wrapper::vstore(ptr + 8, vcombine_f16(vcvt_f16_f32(v.val[2]), vcvt_f16_f32(v.val[3])));
97 }
98 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
99 
100 template <typename T>
store_result(T * ptr,const float32x4x2_t & v)101 inline void store_result(T *ptr, const float32x4x2_t &v)
102 {
103     ARM_COMPUTE_UNUSED(ptr, v);
104 }
105 
106 template <>
store_result(float * ptr,const float32x4x2_t & v)107 inline void store_result<float>(float *ptr, const float32x4x2_t &v)
108 {
109     wrapper::vstore(ptr, v.val[0]);
110     wrapper::vstore(ptr + 4, v.val[1]);
111 }
112 
113 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
114 template <>
store_result(float16_t * ptr,const float32x4x2_t & v)115 inline void store_result<float16_t>(float16_t *ptr, const float32x4x2_t &v)
116 {
117     wrapper::vstore(ptr, vcombine_f16(vcvt_f16_f32(v.val[0]), vcvt_f16_f32(v.val[1])));
118 }
119 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
120 
121 template <typename TOut, typename TIn>
run_dequantization_qasymm8(const ITensor * input,ITensor * output,const Window & window)122 void run_dequantization_qasymm8(const ITensor *input, ITensor *output, const Window &window)
123 {
124     const UniformQuantizationInfo &qinfo  = input->info()->quantization_info().uniform();
125     const float                    scale  = qinfo.scale;
126     const int32_t                  offset = qinfo.offset;
127 
128     const int  window_step_x  = 16;
129     const auto window_start_x = static_cast<int>(window.x().start());
130     const auto window_end_x   = static_cast<int>(window.x().end());
131 
132     // Collapse window and reset first dimension to handle tail calculations manually
133     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
134     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
135 
136     // Create iterators
137     Iterator in(input, win_collapsed);
138     Iterator out(output, win_collapsed);
139 
140     execute_window_loop(win_collapsed, [&](const Coordinates &)
141     {
142         const auto in_ptr  = reinterpret_cast<const TIn *>(in.ptr());
143         const auto out_ptr = reinterpret_cast<TOut *>(out.ptr());
144 
145         int x = window_start_x;
146         for(; x <= (window_end_x - window_step_x); x += window_step_x)
147         {
148             const auto vin  = wrapper::vloadq(in_ptr + x);
149             const auto vdeq = vdequantize(vin, scale, offset);
150 
151             store_result(reinterpret_cast<TOut *>(out_ptr + x), vdeq);
152         }
153 
154         // Compute left-over elements
155         for(; x < window_end_x; ++x)
156         {
157             auto val       = *(in_ptr + x);
158             *(out_ptr + x) = static_cast<TOut>(Qasymm8QuantizationHelper<TIn>::dequantize(val, qinfo));
159         }
160     },
161     in, out);
162 }
163 
164 template <typename T>
run_dequantization_qsymm8_per_channel_nchw(const ITensor * input,ITensor * output,const Window & window)165 void run_dequantization_qsymm8_per_channel_nchw(const ITensor *input, ITensor *output, const Window &window)
166 {
167     const auto scale = input->info()->quantization_info().scale();
168 
169     const int  window_step_x  = 16;
170     const auto window_start_x = static_cast<int>(window.x().start());
171     const auto window_end_x   = static_cast<int>(window.x().end());
172 
173     // Reset first dimension to handle tail calculations manually
174     Window win(window);
175     win.set(Window::DimX, Window::Dimension(0, 1, 1));
176 
177     // Create iterators
178     Iterator in(input, win);
179     Iterator out(output, win);
180 
181     execute_window_loop(win, [&](const Coordinates & id)
182     {
183         const auto in_ptr  = reinterpret_cast<const int8_t *>(in.ptr());
184         const auto out_ptr = reinterpret_cast<T *>(out.ptr());
185 
186         int x = window_start_x;
187         for(; x <= (window_end_x - window_step_x); x += window_step_x)
188         {
189             const auto vin  = wrapper::vloadq(in_ptr + x);
190             const auto vdeq = vdequantize(vin, scale[id.z()]);
191 
192             store_result<T>(reinterpret_cast<T *>(out_ptr + x), vdeq);
193         }
194 
195         // Compute left-over elements
196         for(; x < window_end_x; ++x)
197         {
198             int8_t val     = *(in_ptr + x);
199             *(out_ptr + x) = static_cast<T>(dequantize(val, scale[id.z()]));
200         }
201     },
202     in, out);
203 }
204 
205 template <typename T>
run_dequantization_qsymm8_per_channel_nhwc(const ITensor * input,ITensor * output,const Window & window)206 void run_dequantization_qsymm8_per_channel_nhwc(const ITensor *input, ITensor *output, const Window &window)
207 {
208     const auto scale = input->info()->quantization_info().scale();
209 
210     const int  window_step_x  = 16;
211     const auto window_start_x = static_cast<int>(window.x().start());
212     const auto window_end_x   = static_cast<int>(window.x().end());
213 
214     // Reset first dimension to handle tail calculations manually
215     Window win(window);
216     win.set(Window::DimX, Window::Dimension(0, 1, 1));
217 
218     // Create iterators
219     Iterator in(input, win);
220     Iterator out(output, win);
221 
222     execute_window_loop(win, [&](const Coordinates &)
223     {
224         const auto in_ptr  = reinterpret_cast<const int8_t *>(in.ptr());
225         const auto out_ptr = reinterpret_cast<T *>(out.ptr());
226 
227         int x = window_start_x;
228         for(; x <= (window_end_x - window_step_x); x += window_step_x)
229         {
230             const float32x4x4_t vscale =
231             {
232                 {
233                     scale[x + 0], scale[x + 1], scale[x + 2], scale[x + 3],
234                     scale[x + 4], scale[x + 5], scale[x + 6], scale[x + 7],
235                     scale[x + 8], scale[x + 9], scale[x + 10], scale[x + 11],
236                     scale[x + 12], scale[x + 13], scale[x + 14], scale[x + 15]
237                 }
238             };
239             const auto vin  = wrapper::vloadq(in_ptr + x);
240             const auto vdeq = vdequantize(vin, vscale);
241 
242             store_result<T>(reinterpret_cast<T *>(out_ptr + x), vdeq);
243         }
244 
245         // Compute left-over elements
246         for(; x < window_end_x; ++x)
247         {
248             int8_t val     = *(in_ptr + x);
249             *(out_ptr + x) = static_cast<T>(dequantize(val, scale[x]));
250         }
251     },
252     in, out);
253 }
254 
255 template <typename T>
run_dequantization_qsymm8(const ITensor * input,ITensor * output,const Window & window)256 void run_dequantization_qsymm8(const ITensor *input, ITensor *output, const Window &window)
257 {
258     const UniformQuantizationInfo &qinfo = input->info()->quantization_info().uniform();
259     const float                    scale = qinfo.scale;
260 
261     const int  window_step_x  = 16;
262     const auto window_start_x = static_cast<int>(window.x().start());
263     const auto window_end_x   = static_cast<int>(window.x().end());
264 
265     // Collapse window and reset first dimension to handle tail calculations manually
266     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
267     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
268 
269     // Create iterators
270     Iterator in(input, win_collapsed);
271     Iterator out(output, win_collapsed);
272 
273     execute_window_loop(win_collapsed, [&](const Coordinates &)
274     {
275         const auto in_ptr  = reinterpret_cast<const int8_t *>(in.ptr());
276         const auto out_ptr = reinterpret_cast<T *>(out.ptr());
277 
278         int x = window_start_x;
279         for(; x <= (window_end_x - window_step_x); x += window_step_x)
280         {
281             const auto vin  = wrapper::vloadq(in_ptr + x);
282             const auto vdeq = vdequantize(vin, scale);
283 
284             store_result<T>(reinterpret_cast<T *>(out_ptr + x), vdeq);
285         }
286 
287         // Compute left-over elements
288         for(; x < window_end_x; ++x)
289         {
290             int8_t val     = *(in_ptr + x);
291             *(out_ptr + x) = static_cast<T>(dequantize(val, scale));
292         }
293     },
294     in, out);
295 }
296 
297 template <typename T>
run_dequantization_qsymm16(const ITensor * input,ITensor * output,const Window & window)298 void run_dequantization_qsymm16(const ITensor *input, ITensor *output, const Window &window)
299 {
300     const UniformQuantizationInfo &qinfo = input->info()->quantization_info().uniform();
301     const float                    scale = qinfo.scale;
302 
303     const int  window_step_x  = 8;
304     const auto window_start_x = static_cast<int>(window.x().start());
305     const auto window_end_x   = static_cast<int>(window.x().end());
306 
307     // Collapse window and reset first dimension to handle tail calculations manually
308     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
309     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
310 
311     // Create iterators
312     Iterator in(input, win_collapsed);
313     Iterator out(output, win_collapsed);
314 
315     execute_window_loop(win_collapsed, [&](const Coordinates &)
316     {
317         const auto in_ptr  = reinterpret_cast<const int16_t *>(in.ptr());
318         const auto out_ptr = reinterpret_cast<T *>(out.ptr());
319 
320         int x = window_start_x;
321         for(; x <= (window_end_x - window_step_x); x += window_step_x)
322         {
323             const auto vin  = wrapper::vloadq(in_ptr + x);
324             const auto vdeq = vdequantize_int16(vin, scale);
325 
326             store_result<T>(reinterpret_cast<T *>(out_ptr + x), vdeq);
327         }
328 
329         // Compute left-over elements
330         for(; x < window_end_x; ++x)
331         {
332             int16_t val    = *(in_ptr + x);
333             *(out_ptr + x) = static_cast<T>(dequantize_qsymm16(val, scale));
334         }
335     },
336     in, out);
337 }
338 
339 template <typename T>
run_dequantization_core(const ITensor * input,ITensor * output,const Window & window)340 void run_dequantization_core(const ITensor *input, ITensor *output, const Window &window)
341 {
342     switch(input->info()->data_type())
343     {
344         case DataType::QASYMM8:
345             run_dequantization_qasymm8<T, uint8_t>(input, output, window);
346             break;
347         case DataType::QASYMM8_SIGNED:
348             run_dequantization_qasymm8<T, int8_t>(input, output, window);
349             break;
350         case DataType::QSYMM8_PER_CHANNEL:
351             input->info()->data_layout() == DataLayout::NHWC ? run_dequantization_qsymm8_per_channel_nhwc<T>(input, output, window) : run_dequantization_qsymm8_per_channel_nchw<T>(input, output, window);
352             break;
353         case DataType::QSYMM8:
354             run_dequantization_qsymm8<T>(input, output, window);
355             break;
356         case DataType::QSYMM16:
357             run_dequantization_qsymm16<T>(input, output, window);
358             break;
359         default:
360             ARM_COMPUTE_ERROR("Unsupported data type.");
361     }
362 }
363 } // namespace
364 
NEDequantizationLayerKernel()365 NEDequantizationLayerKernel::NEDequantizationLayerKernel()
366     : _input(nullptr), _output(nullptr)
367 {
368 }
369 
configure(const ITensor * input,ITensor * output)370 void NEDequantizationLayerKernel::configure(const ITensor *input, ITensor *output)
371 {
372     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
373     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info()));
374 
375     _input  = input;
376     _output = output;
377 
378     // Configure kernel window
379     auto win_config = validate_and_configure_window(input->info(), output->info());
380 
381     ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
382 
383     INEKernel::configure(std::get<1>(win_config));
384 }
385 
validate(const ITensorInfo * input,const ITensorInfo * output)386 Status NEDequantizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output)
387 {
388     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output));
389     ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get())));
390     return Status{};
391 }
392 
run(const Window & window,const ThreadInfo & info)393 void NEDequantizationLayerKernel::run(const Window &window, const ThreadInfo &info)
394 {
395     ARM_COMPUTE_UNUSED(info);
396     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
397     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
398 
399     switch(_output->info()->data_type())
400     {
401         case DataType::F32:
402             run_dequantization_core<float>(_input, _output, window);
403             break;
404 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
405         case DataType::F16:
406             run_dequantization_core<float16_t>(_input, _output, window);
407             break;
408 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
409         default:
410             ARM_COMPUTE_ERROR("Unsupported data type.");
411     }
412 }
413 } // namespace arm_compute
414