• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ScaleKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/Types.h"
30 #include "arm_compute/core/Utils.h"
31 #include "arm_compute/core/Validate.h"
32 #include "arm_compute/core/Window.h"
33 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
34 #include "src/core/AccessWindowStatic.h"
35 #include "src/core/NEON/wrapper/wrapper.h"
36 #include "src/core/helpers/AutoConfiguration.h"
37 #include "src/core/helpers/WindowHelpers.h"
38 
39 #include <arm_neon.h>
40 #include <cstddef>
41 #include <cstdint>
42 
43 namespace arm_compute
44 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,const GEMMLowpOutputStageInfo * output_stage)45 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
46 {
47     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
48 
49     ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_max_bound > std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
50     ARM_COMPUTE_RETURN_ERROR_ON(output_stage->gemmlowp_min_bound < std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
51                                 || output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
52 
53     // Check biases if exist
54     if(bias != nullptr)
55     {
56         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
57         ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
58         ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
59     }
60 
61     if(output->total_size() != 0)
62     {
63         if(output->data_type() != output_stage->output_data_type && (output_stage->output_data_type == DataType::QASYMM8 || output_stage->output_data_type == DataType::QASYMM8_SIGNED))
64         {
65             ARM_COMPUTE_RETURN_ERROR_MSG("Mismatching data types");
66         }
67 
68         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
69     }
70 
71     return Status{};
72 }
73 
scale_input(int32x4x4_t & in_s32,int32x4_t result_offset_s32,int32_t result_mult_int)74 inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int)
75 {
76     // Add the offset terms to GEMM's result
77     in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32);
78     in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32);
79     in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32);
80     in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32);
81 
82     // Multiply by result_mult_int
83     in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int);
84     in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int);
85     in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int);
86     in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int);
87 }
88 
89 template <typename T>
90 inline typename std::enable_if<std::is_same<T, uint8_t>::value,
91        typename wrapper::traits::neon_vector<T, 16>::type>::type
convert_to_8bit(const int16x8x2_t in_s16)92        convert_to_8bit(const int16x8x2_t in_s16)
93 {
94     return wrapper::vcombine(wrapper::vqmovun(in_s16.val[0]), wrapper::vqmovun(in_s16.val[1]));
95 }
96 
97 template <typename T>
98 inline typename std::enable_if<std::is_same<T, int8_t>::value,
99        typename wrapper::traits::neon_vector<T, 16>::type>::type
convert_to_8bit(const int16x8x2_t in_s16)100        convert_to_8bit(const int16x8x2_t in_s16)
101 {
102     return wrapper::vcombine(wrapper::vqmovn(in_s16.val[0]), wrapper::vqmovn(in_s16.val[1]));
103 }
104 
105 template <typename T>
finalize_quantization(int32x4x4_t & in_s32,int32x4_t result_shift_s32,typename wrapper::traits::neon_vector<T,16>::type min,typename wrapper::traits::neon_vector<T,16>::type max)106 inline typename wrapper::traits::neon_vector<T, 16>::type finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, typename wrapper::traits::neon_vector<T, 16>::type min,
107                                                                                 typename wrapper::traits::neon_vector<T, 16>::type max)
108 {
109     // Shift final result (negative value shift right)
110     in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
111     in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
112     in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
113     in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
114 
115     // Convert S32 to S16
116     const int16x8x2_t in_s16 =
117     {
118         {
119             vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
120             vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
121         }
122     };
123 
124     // Convert S16 to S8 or U8
125     typename wrapper::traits::neon_vector<T, 16>::type out = convert_to_8bit<T>(in_s16);
126 
127     out = wrapper::vmax(out, min);
128     out = wrapper::vmin(out, max);
129 
130     return out;
131 }
132 
133 class Coordinates;
134 
135 template <typename T>
run(const Window & window)136 void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window)
137 {
138     using VectorType = typename wrapper::traits::neon_vector<T, 16>::type;
139 
140     const int32x4_t result_offset_s32 = vdupq_n_s32(_output_stage->gemmlowp_offset);
141     const int32x4_t result_shift_s32  = vdupq_n_s32(-_output_stage->gemmlowp_shift);
142     const int       window_step_x     = 16;
143     const auto      window_start_x    = static_cast<int>(window.x().start());
144     const auto      window_end_x      = static_cast<int>(window.x().end());
145 
146     const int clamp_min = (_is_bounded_relu) ? _output_stage->gemmlowp_min_bound : std::numeric_limits<T>::lowest();
147     const int clamp_max = (_is_bounded_relu) ? _output_stage->gemmlowp_max_bound : std::numeric_limits<T>::max();
148 
149     VectorType min = wrapper::vdup_n(static_cast<T>(clamp_min), wrapper::traits::vector_128_tag{});
150     VectorType max = wrapper::vdup_n(static_cast<T>(clamp_max), wrapper::traits::vector_128_tag{});
151 
152     Window win(window);
153     win.set(Window::DimX, Window::Dimension(0, 1, 1));
154 
155     Iterator in(_input, win);
156     Iterator out(_output, win);
157 
158     if(_bias != nullptr)
159     {
160         Window win_biases;
161         win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
162         win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
163 
164         Iterator bias(_bias, win_biases);
165         execute_window_loop(win, [&](const Coordinates &)
166         {
167             // Compute 16 elements per iteration
168             int x = window_start_x;
169             for(; x <= (window_end_x - window_step_x); x += window_step_x)
170             {
171                 int32x4x4_t in_s32 =
172                 {
173                     {
174                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
175                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
176                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
177                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
178                     }
179                 };
180 
181                 const int32x4x4_t bias_s32 =
182                 {
183                     {
184                         vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
185                         vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4),
186                         vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 8),
187                         vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 12)
188                     }
189                 };
190 
191                 // Add the bias to GEMM's result
192                 in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
193                 in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
194                 in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
195                 in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
196 
197                 // Add the offset terms to GEMM's result and multiply by result_mult_int
198                 scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
199 
200                 wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
201             }
202 
203             // Compute left-over elements
204             for(; x < window_end_x; ++x)
205             {
206                 const int bias_value = *(reinterpret_cast<const int *>(bias.ptr()) + x);
207                 int       in_value   = *(reinterpret_cast<const int *>(in.ptr()) + x);
208 
209                 // Quantize
210                 in_value = ((in_value + bias_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
211 
212                 // Store the result
213                 *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
214             }
215         },
216         in, bias, out);
217     }
218     else
219     {
220         execute_window_loop(win, [&](const Coordinates &)
221         {
222             // Compute 16 elements per iteration
223             int x = window_start_x;
224             for(; x <= (window_end_x - window_step_x); x += window_step_x)
225             {
226                 int32x4x4_t in_s32 =
227                 {
228                     {
229                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
230                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
231                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
232                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
233                     }
234                 };
235 
236                 // Add the offset terms to GEMM's result and multiply by result_mult_int
237                 scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
238 
239                 wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x), finalize_quantization<T>(in_s32, result_shift_s32, min, max));
240             }
241 
242             // Compute left-over elements
243             for(; x < window_end_x; ++x)
244             {
245                 int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
246 
247                 // Quantize
248                 in_value = ((in_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >> _output_stage->gemmlowp_shift;
249 
250                 // Store the result
251                 *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
252             }
253         },
254         in, out);
255     }
256 }
257 
NEGEMMLowpQuantizeDownInt32ScaleKernel()258 NEGEMMLowpQuantizeDownInt32ScaleKernel::NEGEMMLowpQuantizeDownInt32ScaleKernel()
259     : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _output_stage(nullptr), _is_bounded_relu(false)
260 {
261 }
262 
configure(const ITensor * input,const ITensor * bias,ITensor * output,const GEMMLowpOutputStageInfo * output_stage)263 void NEGEMMLowpQuantizeDownInt32ScaleKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, const GEMMLowpOutputStageInfo *output_stage)
264 {
265     // Perform validate step
266     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, output_stage);
267 
268     // Output auto inizialitation if not yet initialized
269     auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(output_stage->output_data_type));
270 
271     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
272                                                   (bias != nullptr) ? bias->info() : nullptr,
273                                                   output->info(),
274                                                   output_stage));
275 
276     _input        = input;
277     _bias         = bias;
278     _output       = output;
279     _output_stage = output_stage;
280 
281     // Configure kernel window
282     Window      win = calculate_max_window(*input->info(), Steps());
283     Coordinates coord;
284     coord.set_num_dimensions(output->info()->num_dimensions());
285     output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
286 
287     INEKernel::configure(win);
288 
289     // Check if we need to clamp the result using min and max
290     _is_bounded_relu = ((_output_stage->gemmlowp_min_bound != _output_stage->gemmlowp_max_bound)
291                         && !(_output_stage->gemmlowp_min_bound == std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))
292                              && _output_stage->gemmlowp_max_bound == std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))));
293     if(_output_stage->output_data_type == DataType::QASYMM8)
294     {
295         _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<uint8_t>;
296     }
297     else if(_output_stage->output_data_type == DataType::QASYMM8_SIGNED)
298     {
299         _func = &NEGEMMLowpQuantizeDownInt32ScaleKernel::run<int8_t>;
300     }
301     else
302     {
303         ARM_COMPUTE_ERROR("Data type not supported");
304     }
305 }
306 
validate(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,const GEMMLowpOutputStageInfo * output_stage)307 Status NEGEMMLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
308 {
309     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
310     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, output_stage));
311 
312     return Status{};
313 }
314 
run(const Window & window,const ThreadInfo & info)315 void NEGEMMLowpQuantizeDownInt32ScaleKernel::run(const Window &window, const ThreadInfo &info)
316 {
317     ARM_COMPUTE_UNUSED(info);
318     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
319     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
320 
321     (this->*_func)(window);
322 }
323 } // namespace arm_compute