• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/TensorInfo.h"
30 #include "arm_compute/core/Types.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/Validate.h"
33 #include "arm_compute/core/Window.h"
34 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
35 #include "src/core/AccessWindowStatic.h"
36 #include "src/core/NEON/NESymm.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 #include "src/core/helpers/WindowHelpers.h"
39 
40 #include <arm_neon.h>
41 #include <cstddef>
42 #include <cstdint>
43 
44 namespace arm_compute
45 {
46 namespace
47 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,int min,int max)48 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
49 {
50     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
51     ARM_COMPUTE_RETURN_ERROR_ON(min > max);
52 
53     // Check biases if exist
54     if(bias != nullptr)
55     {
56         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
57         ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
58         ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
59     }
60 
61     if(output->total_size() != 0)
62     {
63         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QSYMM16);
64         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, input);
65     }
66 
67     return Status{};
68 }
69 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * output)70 std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
71 {
72     // Output auto inizialitation if not yet initialized
73     auto_init_if_empty(*output, input->clone()->set_data_type(DataType::QSYMM16));
74 
75     // Configure kernel window
76     Window win = calculate_max_window(*input, Steps());
77 
78     // NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel doesn't need padding so update_window_and_padding() can be skipped
79     Coordinates coord;
80     coord.set_num_dimensions(output->num_dimensions());
81     output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
82 
83     return std::make_pair(Status{}, win);
84 }
85 } // namespace
86 
87 class Coordinates;
88 
89 template <bool is_bounded_relu>
run(const Window & window)90 void NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::run(const Window &window)
91 {
92     const int16x8_t min_s16 = vdupq_n_s16(static_cast<int16_t>(_min));
93     const int16x8_t max_s16 = vdupq_n_s16(static_cast<int16_t>(_max));
94 
95     ARM_COMPUTE_UNUSED(min_s16);
96     ARM_COMPUTE_UNUSED(max_s16);
97 
98     const int  window_step_x  = 8;
99     const auto window_start_x = static_cast<int>(window.x().start());
100     const auto window_end_x   = static_cast<int>(window.x().end());
101 
102     Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
103     win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
104 
105     Iterator in(_input, win_collapsed);
106     Iterator out(_output, win_collapsed);
107     if(_bias != nullptr)
108     {
109         Window win_biases;
110         win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
111         win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
112 
113         Iterator bias(_bias, win_biases);
114         execute_window_loop(win_collapsed, [&](const Coordinates &)
115         {
116             // Compute 16 elements per iteration
117             int x = window_start_x;
118             for(; x <= (window_end_x - window_step_x); x += window_step_x)
119             {
120                 int32x4x2_t in_s32 =
121                 {
122                     {
123                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
124                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4)
125                     }
126                 };
127 
128                 const int32x4x2_t bias_s32 =
129                 {
130                     {
131                         vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
132                         vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4)
133                     }
134                 };
135 
136                 // Add the bias to GEMM's result
137                 in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
138                 in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
139 
140                 vst1q_s16(reinterpret_cast<int16_t *>(out.ptr()) + x, finalize_quantization_int16<is_bounded_relu>(in_s32, _result_fixedpoint_multiplier, _result_shift, min_s16, max_s16));
141             }
142 
143             // Compute left-over elements
144             for(; x < window_end_x; ++x)
145             {
146                 const int32_t bias_value = *(reinterpret_cast<const int32_t *>(bias.ptr()) + x);
147                 int32_t       in_value   = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
148 
149                 // Add bias
150                 in_value += bias_value;
151                 // Finalize and store the result
152                 *(reinterpret_cast<int16_t *>(out.ptr()) + x) = finalize_quantization_int16<is_bounded_relu>(in_value, _result_fixedpoint_multiplier, _result_shift, static_cast<int16_t>(_min),
153                                                                                                              static_cast<int16_t>(_max));
154             }
155         },
156         in, out, bias);
157     }
158     else
159     {
160         execute_window_loop(win_collapsed, [&](const Coordinates &)
161         {
162             // Compute 16 elements per iteration
163             int x = window_start_x;
164             for(; x <= (window_end_x - window_step_x); x += window_step_x)
165             {
166                 int32x4x2_t in_s32 =
167                 {
168                     {
169                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
170                         vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4)
171                     }
172                 };
173 
174                 vst1q_s16(reinterpret_cast<int16_t *>(out.ptr()) + x, finalize_quantization_int16<is_bounded_relu>(in_s32, _result_fixedpoint_multiplier, _result_shift, min_s16, max_s16));
175             }
176 
177             // Compute left-over elements
178             for(; x < window_end_x; ++x)
179             {
180                 const int32_t in_value = *(reinterpret_cast<const int32_t *>(in.ptr()) + x);
181                 ARM_COMPUTE_UNUSED(in_value);
182                 // Finalize and store the result
183                 *(reinterpret_cast<int16_t *>(out.ptr()) + x) = finalize_quantization_int16<is_bounded_relu>(in_value, _result_fixedpoint_multiplier, _result_shift, static_cast<int16_t>(_min),
184                                                                                                              static_cast<int16_t>(_max));
185             }
186         },
187         in, out);
188     }
189 }
190 
NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel()191 NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel()
192     : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_fixedpoint_multiplier(0), _result_shift(0), _min(0), _max(0)
193 {
194 }
195 
configure(const ITensor * input,const ITensor * bias,ITensor * output,int result_fixedpoint_multiplier,int result_shift,int min,int max)196 void NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_fixedpoint_multiplier, int result_shift,
197                                                                           int min, int max)
198 {
199     // Perform validate step
200     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
201     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info(), min, max));
202 
203     _input                        = input;
204     _bias                         = bias;
205     _output                       = output;
206     _result_fixedpoint_multiplier = result_fixedpoint_multiplier;
207     _result_shift                 = result_shift;
208     _min                          = min;
209     _max                          = max;
210 
211     // Configure kernel window
212     auto win_config = validate_and_configure_window(input->info(), output->info());
213     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
214     INEKernel::configure(win_config.second);
215 
216     // Check if we need to clamp the result using min and max
217     const bool is_bounded_relu = !(min <= -32768 && max >= 32767);
218     _func                      = is_bounded_relu ? &NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::run<true> : &NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::run<false>;
219 }
220 
validate(const ITensorInfo * input,const ITensorInfo * bias,const ITensorInfo * output,int min,int max)221 Status NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
222 {
223     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
224     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, min, max));
225     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
226 
227     return Status{};
228 }
229 
run(const Window & window,const ThreadInfo & info)230 void NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::run(const Window &window, const ThreadInfo &info)
231 {
232     ARM_COMPUTE_UNUSED(info);
233     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
234     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
235 
236     (this->*_func)(window);
237 }
238 } // namespace arm_compute
239