• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEInstanceNormalizationLayerKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/KernelDescriptors.h"
30 #include "arm_compute/core/TensorInfo.h"
31 #include "arm_compute/core/Utils.h"
32 #include "arm_compute/core/Validate.h"
33 #include "arm_compute/core/Window.h"
34 #include "src/core/CPP/Validate.h"
35 #include "src/core/NEON/NEMath.h"
36 #include "src/core/NEON/wrapper/wrapper.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 #include "src/core/helpers/WindowHelpers.h"
39 
40 #include <arm_neon.h>
41 
42 namespace arm_compute
43 {
44 namespace
45 {
46 template <typename InputType, typename AccType = InputType>
vector_float_sum(AccType & result,AccType & result_square,const InputType & inputs)47 void vector_float_sum(AccType &result, AccType &result_square, const InputType &inputs)
48 {
49     result        = wrapper::vadd(result, inputs);
50     result_square = wrapper::vadd(result_square, wrapper::vmul(inputs, inputs));
51 }
52 
53 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
54 template <>
vector_float_sum(float32x4_t & result,float32x4_t & result_square,const float16x8_t & inputs)55 inline void vector_float_sum(float32x4_t &result, float32x4_t &result_square, const float16x8_t &inputs)
56 {
57     vector_float_sum(result, result_square, wrapper::vcvt<float>(wrapper::vgetlow(inputs)));
58     vector_float_sum(result, result_square, wrapper::vcvt<float>(wrapper::vgethigh(inputs)));
59 }
60 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
61 
62 template <typename InputType, typename AccType = InputType>
vector_float_norm(const InputType & inputs,const AccType & vec_mean,const AccType & vec_multip,const AccType & vec_beta)63 InputType vector_float_norm(const InputType &inputs, const AccType &vec_mean, const AccType &vec_multip, const AccType &vec_beta)
64 {
65     return wrapper::vadd(wrapper::vmul(wrapper::vsub(inputs, vec_mean), vec_multip), vec_beta);
66 }
67 
68 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
69 template <>
vector_float_norm(const float16x8_t & inputs,const float32x4_t & vec_mean,const float32x4_t & vec_multip,const float32x4_t & vec_beta)70 inline float16x8_t vector_float_norm(const float16x8_t &inputs, const float32x4_t &vec_mean, const float32x4_t &vec_multip, const float32x4_t &vec_beta)
71 {
72     const auto  input_low   = wrapper::vcvt<float>(wrapper::vgetlow(inputs));
73     const auto  input_high  = wrapper::vcvt<float>(wrapper::vgethigh(inputs));
74     const auto  result_low  = wrapper::vcvt<float16_t>(vector_float_norm(input_low, vec_mean, vec_multip, vec_beta));
75     const auto  result_high = wrapper::vcvt<float16_t>(vector_float_norm(input_high, vec_mean, vec_multip, vec_beta));
76     float16x8_t result      = wrapper::vcombine(result_low, result_high);
77 
78     return result;
79 }
80 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
81 
82 template <typename T, typename AccType = T>
instance_normalization_nchw(ITensor * input,ITensor * output,float gamma,float beta,float epsilon,const Window & window)83 void instance_normalization_nchw(ITensor *input, ITensor *output, float gamma, float beta, float epsilon, const Window &window)
84 {
85     /** NEON vector tag type. */
86     using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
87 
88     // Clear X/Y dimensions on execution window as we handle the planes manually
89     Window win = window;
90     win.set(Window::DimX, Window::Dimension(0, 1, 1));
91     win.set(Window::DimY, Window::Dimension(0, 1, 1));
92 
93     constexpr int      window_step_x  = 16 / sizeof(T);
94     const unsigned int elements_plane = input->info()->dimension(0) * output->info()->dimension(1);
95 
96     Iterator input_it(input, win);
97     execute_window_loop(win, [&](const Coordinates & id)
98     {
99         Window win_plane = window;
100         win_plane.set(Window::DimX, Window::Dimension(0, 1, 1));
101         win_plane.set(Window::DimZ, Window::Dimension(id[2], id[2] + 1, 1));
102         win_plane.set(3, Window::Dimension(id[3], id[3] + 1, 1));
103 
104         Iterator input_plane_it(input, win_plane);
105         Iterator output_plane_it(output, win_plane);
106 
107         auto sum_h_w         = static_cast<AccType>(0.f);
108         auto sum_squares_h_w = static_cast<AccType>(0.f);
109 
110         execute_window_loop(win_plane, [&](const Coordinates &)
111         {
112             const auto input_ptr = reinterpret_cast<const T *>(input_plane_it.ptr());
113 
114             auto vec_sum_h_w         = wrapper::vdup_n(static_cast<AccType>(0.f), ExactTagType{});
115             auto vec_sum_squares_h_w = wrapper::vdup_n(static_cast<AccType>(0.f), ExactTagType{});
116 
117             // Compute S elements per iteration
118             int x = window.x().start();
119             for(; x <= (window.x().end() - window_step_x); x += window_step_x)
120             {
121                 auto vec_input_val = wrapper::vloadq(input_ptr + x);
122                 vector_float_sum(vec_sum_h_w, vec_sum_squares_h_w, vec_input_val);
123             }
124 
125             auto vec2_sum_h_w         = wrapper::vpadd(wrapper::vgethigh(vec_sum_h_w), wrapper::vgetlow(vec_sum_h_w));
126             auto vec2_sum_squares_h_w = wrapper::vpadd(wrapper::vgethigh(vec_sum_squares_h_w), wrapper::vgetlow(vec_sum_squares_h_w));
127 
128             vec2_sum_h_w         = wrapper::vpadd(vec2_sum_h_w, vec2_sum_h_w);
129             vec2_sum_squares_h_w = wrapper::vpadd(vec2_sum_squares_h_w, vec2_sum_squares_h_w);
130 
131             sum_h_w += wrapper::vgetlane(vec2_sum_h_w, 0);
132             sum_squares_h_w += wrapper::vgetlane(vec2_sum_squares_h_w, 0);
133 
134             // Compute left-over elements
135             for(; x < window.x().end(); ++x)
136             {
137                 const auto value = static_cast<AccType>(*(input_ptr + x));
138                 sum_h_w += value;
139                 sum_squares_h_w += value * value;
140             }
141         },
142         input_plane_it, output_plane_it);
143 
144         const auto mean_h_w = sum_h_w / elements_plane;
145         const auto var_h_w  = sum_squares_h_w / elements_plane - mean_h_w * mean_h_w;
146 
147         const auto multip_h_w     = gamma / std::sqrt(var_h_w + epsilon);
148         const auto vec_mean_h_w   = wrapper::vdup_n(static_cast<AccType>(mean_h_w), ExactTagType{});
149         const auto vec_multip_h_w = wrapper::vdup_n(static_cast<AccType>(multip_h_w), ExactTagType{});
150         const auto vec_beta       = wrapper::vdup_n(static_cast<AccType>(beta), ExactTagType{});
151 
152         execute_window_loop(win_plane, [&](const Coordinates &)
153         {
154             auto input_ptr  = reinterpret_cast<T *>(input_plane_it.ptr());
155             auto output_ptr = reinterpret_cast<T *>(output_plane_it.ptr());
156 
157             // Compute S elements per iteration
158             int x = window.x().start();
159             //auto vec_val = wrapper::vdup_n(static_cast<T>(0.0f), ExactTagType{});
160             for(; x <= (window.x().end() - window_step_x); x += window_step_x)
161             {
162                 const auto vec_val        = wrapper::vloadq(input_ptr + x);
163                 const auto normalized_vec = vector_float_norm(vec_val, vec_mean_h_w, vec_multip_h_w, vec_beta);
164                 wrapper::vstore(output_ptr + x, normalized_vec);
165             }
166 
167             // Compute left-over elements
168             for(; x < window.x().end(); ++x)
169             {
170                 const auto val    = static_cast<AccType>(*(input_ptr + x));
171                 *(output_ptr + x) = static_cast<T>((val - mean_h_w) * multip_h_w + beta);
172             }
173         },
174         input_plane_it, output_plane_it);
175     },
176     input_it);
177 }
178 
validate_arguments(const ITensorInfo * input,const ITensorInfo * output,float gamma,float beta,float epsilon)179 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, float gamma, float beta, float epsilon)
180 {
181     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
182     ARM_COMPUTE_UNUSED(gamma);
183     ARM_COMPUTE_UNUSED(beta);
184     ARM_COMPUTE_RETURN_ERROR_ON_MSG(epsilon == 0.f, "Epsilon must be different than 0");
185 
186     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F16, DataType::F32);
187     ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->data_layout() == DataLayout::NHWC, "NHWC data layout is not supported by the kernel directly");
188 
189     if(output != nullptr && output->total_size() != 0)
190     {
191         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
192         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
193         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
194         ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_channels() != output->num_channels(), "Input and output have different number of channels");
195     }
196     return Status{};
197 }
198 
validate_and_configure_window(ITensorInfo * input,ITensorInfo * output)199 std::tuple<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
200 {
201     // We handle the planes manually
202     Window win = calculate_max_window(*input, Steps(1));
203 
204     // Output auto initialization if not yet initialized
205     auto_init_if_empty(*output, input->tensor_shape(), 1, input->data_type());
206 
207     // NEInstanceNormalizationLayerKernel doesn't need padding so update_window_and_padding() can be skipped
208     Coordinates coord;
209     coord.set_num_dimensions(output->num_dimensions());
210     output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
211     return std::make_pair(Status{}, win);
212 }
213 } // namespace
214 
NEInstanceNormalizationLayerKernel()215 NEInstanceNormalizationLayerKernel::NEInstanceNormalizationLayerKernel()
216     : _func(nullptr), _input(nullptr), _output(nullptr), _gamma(1), _beta(0), _epsilon(1e-12)
217 {
218 }
219 
configure(ITensor * input,ITensor * output,const InstanceNormalizationLayerKernelInfo & info)220 void NEInstanceNormalizationLayerKernel::configure(ITensor *input, ITensor *output, const InstanceNormalizationLayerKernelInfo &info)
221 {
222     ARM_COMPUTE_ERROR_ON_NULLPTR(input);
223 
224     _input               = input;
225     _output              = output == nullptr ? input : output;
226     _gamma               = info.gamma;
227     _beta                = info.beta;
228     _epsilon             = info.epsilon;
229     _use_mixed_precision = info.use_mixed_precision;
230 
231     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(_input->info(), _output->info(), _gamma, _beta, _epsilon));
232 
233     if(_input->info()->data_type() == DataType::F32)
234     {
235         _func = &instance_normalization_nchw<float>;
236     }
237 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
238     else if(_input->info()->data_type() == DataType::F16)
239     {
240         if(_use_mixed_precision)
241         {
242             _func = &instance_normalization_nchw<float16_t, float>;
243         }
244         else
245         {
246             _func = &instance_normalization_nchw<float16_t>;
247         }
248     }
249 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
250     else
251     {
252         ARM_COMPUTE_ERROR("Unsupported data type");
253     }
254 
255     // Configure kernel window
256     auto win_config = validate_and_configure_window(_input->info(), _output->info());
257     ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
258 
259     INEKernel::configure(std::get<1>(win_config));
260 }
261 
validate(const ITensorInfo * input,const ITensorInfo * output,const InstanceNormalizationLayerKernelInfo & info)262 Status NEInstanceNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const InstanceNormalizationLayerKernelInfo &info)
263 {
264     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, info.gamma, info.beta, info.epsilon));
265     ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), (output == nullptr ? input->clone().get() : output->clone().get()))));
266     return Status{};
267 }
268 
run(const Window & window,const ThreadInfo & info)269 void NEInstanceNormalizationLayerKernel::run(const Window &window, const ThreadInfo &info)
270 {
271     ARM_COMPUTE_UNUSED(info);
272     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
273     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
274     (*_func)(_input, _output, _gamma, _beta, _epsilon, window);
275 }
276 } // namespace arm_compute
277