• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEROIPoolingLayerKernel.h"
25 
26 #include "arm_compute/core/TensorInfo.h"
27 #include "arm_compute/core/Validate.h"
28 #include "arm_compute/core/Window.h"
29 #include "src/core/CPP/Validate.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 #include "support/ToolchainSupport.h"
33 
34 #include <cfloat>
35 
36 namespace arm_compute
37 {
NEROIPoolingLayerKernel()38 NEROIPoolingLayerKernel::NEROIPoolingLayerKernel()
39     : _input(nullptr), _rois(nullptr), _output(nullptr), _pool_info(0, 0, 0.f)
40 {
41 }
42 
configure(const ITensor * input,const ITensor * rois,ITensor * output,const ROIPoolingLayerInfo & pool_info)43 void NEROIPoolingLayerKernel::configure(const ITensor *input, const ITensor *rois, ITensor *output, const ROIPoolingLayerInfo &pool_info)
44 {
45     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, rois);
46 
47     //Validate arguments
48     ARM_COMPUTE_ERROR_ON_NULLPTR(input->info(), rois->info(), output->info());
49     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(rois, 1, DataType::U16);
50     ARM_COMPUTE_ERROR_ON(rois->info()->dimension(0) != 5);
51     ARM_COMPUTE_ERROR_ON(rois->info()->num_dimensions() > 2);
52     ARM_COMPUTE_ERROR_ON_CPU_F16_UNSUPPORTED(input);
53     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
54     ARM_COMPUTE_ERROR_ON((pool_info.pooled_width() == 0) || (pool_info.pooled_height() == 0));
55 
56     if(output->info()->total_size() != 0)
57     {
58         ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
59         ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pool_info.pooled_width()) || (output->info()->dimension(1) != pool_info.pooled_height()));
60         ARM_COMPUTE_ERROR_ON(input->info()->dimension(2) != output->info()->dimension(2));
61         ARM_COMPUTE_ERROR_ON(rois->info()->dimension(1) != output->info()->dimension(3));
62     }
63 
64     // Output auto initialization if not yet initialized
65     TensorShape output_shape(pool_info.pooled_width(), pool_info.pooled_height(), input->info()->dimension(2), rois->info()->dimension(1));
66     auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type());
67 
68     ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
69     ARM_COMPUTE_ERROR_ON((output->info()->dimension(0) != pool_info.pooled_width()) || (output->info()->dimension(1) != pool_info.pooled_height()));
70 
71     // Set instance variables
72     _input     = input;
73     _rois      = rois;
74     _output    = output;
75     _pool_info = pool_info;
76 
77     // Configure kernel window
78     Window window;
79     window.set(Window::DimX, Window::Dimension(0, rois->info()->dimension(1)));
80     window.set(Window::DimY, Window::Dimension(0, 1));
81 
82     Coordinates coord;
83     coord.set_num_dimensions(output->info()->num_dimensions());
84     output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
85 
86     INEKernel::configure(window);
87 }
88 
run(const Window & window,const ThreadInfo & info)89 void NEROIPoolingLayerKernel::run(const Window &window, const ThreadInfo &info)
90 {
91     ARM_COMPUTE_UNUSED(info);
92     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
93     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
94 
95     const size_t values_per_roi = _rois->info()->dimension(0);
96 
97     const int   roi_list_start = window.x().start();
98     const int   roi_list_end   = window.x().end();
99     const int   width          = _input->info()->dimension(Window::DimX);
100     const int   height         = _input->info()->dimension(Window::DimY);
101     const int   fms            = _input->info()->dimension(Window::DimZ);
102     const int   pooled_w       = _pool_info.pooled_width();
103     const int   pooled_h       = _pool_info.pooled_height();
104     const float spatial_scale  = _pool_info.spatial_scale();
105 
106     const auto *rois_ptr = reinterpret_cast<const uint16_t *>(_rois->buffer());
107 
108     for(int roi_indx = roi_list_start; roi_indx < roi_list_end; ++roi_indx)
109     {
110         const unsigned int roi_batch = rois_ptr[values_per_roi * roi_indx];
111         const auto         x1        = rois_ptr[values_per_roi * roi_indx + 1];
112         const auto         y1        = rois_ptr[values_per_roi * roi_indx + 2];
113         const auto         x2        = rois_ptr[values_per_roi * roi_indx + 3];
114         const auto         y2        = rois_ptr[values_per_roi * roi_indx + 4];
115 
116         // Scale ROI
117         const int roi_anchor_x = support::cpp11::round(x1 * spatial_scale);
118         const int roi_anchor_y = support::cpp11::round(y1 * spatial_scale);
119         const int roi_width    = std::max(support::cpp11::round((x2 - x1) * spatial_scale), 1.f);
120         const int roi_height   = std::max(support::cpp11::round((y2 - y1) * spatial_scale), 1.f);
121 
122         // Iterate through all feature maps
123         for(int fm = 0; fm < fms; ++fm)
124         {
125             // Iterate through all output pixels
126             for(int py = 0; py < pooled_h; ++py)
127             {
128                 for(int px = 0; px < pooled_w; ++px)
129                 {
130                     auto region_start_x = static_cast<int>(std::floor((static_cast<float>(px) / pooled_w) * roi_width));
131                     auto region_end_x   = static_cast<int>(std::floor((static_cast<float>(px + 1) / pooled_w) * roi_width));
132                     auto region_start_y = static_cast<int>(std::floor((static_cast<float>(py) / pooled_h) * roi_height));
133                     auto region_end_y   = static_cast<int>(std::floor((static_cast<float>(py + 1) / pooled_h) * roi_height));
134 
135                     region_start_x = std::min(std::max(region_start_x + roi_anchor_x, 0), width);
136                     region_end_x   = std::min(std::max(region_end_x + roi_anchor_x, 0), width);
137                     region_start_y = std::min(std::max(region_start_y + roi_anchor_y, 0), height);
138                     region_end_y   = std::min(std::max(region_end_y + roi_anchor_y, 0), height);
139 
140                     // Iterate through the pooling region
141                     if((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
142                     {
143                         *reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(px, py, fm, roi_indx))) = 0;
144                     }
145                     else
146                     {
147                         float curr_max = -FLT_MAX;
148                         for(int j = region_start_y; j < region_end_y; ++j)
149                         {
150                             for(int i = region_start_x; i < region_end_x; ++i)
151                             {
152                                 const auto val = *reinterpret_cast<const float *>(_input->ptr_to_element(Coordinates(i, j, fm, roi_batch)));
153                                 curr_max       = std::max(val, curr_max);
154                             }
155                         }
156                         *reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(px, py, fm, roi_indx))) = curr_max;
157                     }
158                 }
159             }
160         }
161     }
162 }
163 } // namespace arm_compute