1 /*
2 * Copyright (c) 2016-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "arm_compute/core/Helpers.h"
26
27 #include "arm_compute/core/Utils.h"
28
29 #include <algorithm>
30 #include <cmath>
31 #include <cstdint>
32 #include <fstream>
33 #include <map>
34 #include <string>
35
36 namespace arm_compute
37 {
read_file(const std::string & filename,bool binary)38 std::string read_file(const std::string &filename, bool binary)
39 {
40 std::string out;
41 std::ifstream fs;
42
43 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
44 try
45 {
46 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
47 fs.exceptions(std::ifstream::failbit | std::ifstream::badbit);
48 std::ios_base::openmode mode = std::ios::in;
49
50 if(binary)
51 {
52 mode |= std::ios::binary;
53 }
54
55 fs.open(filename, mode);
56
57 // Go to the end of the file
58 fs.seekg(0, std::ios::end);
59 // Reserve the memory required to store the file's content
60 out.reserve(fs.tellg());
61 // Go back to the beginning of the file
62 fs.seekg(0, std::ios::beg);
63 // Copy the content of the file
64 out.assign(std::istreambuf_iterator<char>(fs), std::istreambuf_iterator<char>());
65 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
66 }
67 catch(const std::ifstream::failure &e)
68 {
69 ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", filename.c_str(), e.what());
70 }
71 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
72
73 return out;
74 }
75
string_from_format(Format format)76 const std::string &string_from_format(Format format)
77 {
78 static std::map<Format, const std::string> formats_map =
79 {
80 { Format::UNKNOWN, "UNKNOWN" },
81 { Format::U8, "U8" },
82 { Format::S16, "S16" },
83 { Format::U16, "U16" },
84 { Format::S32, "S32" },
85 { Format::U32, "U32" },
86 { Format::F16, "F16" },
87 { Format::F32, "F32" },
88 { Format::UV88, "UV88" },
89 { Format::RGB888, "RGB888" },
90 { Format::RGBA8888, "RGBA8888" },
91 { Format::YUV444, "YUV444" },
92 { Format::YUYV422, "YUYV422" },
93 { Format::NV12, "NV12" },
94 { Format::NV21, "NV21" },
95 { Format::IYUV, "IYUV" },
96 { Format::UYVY422, "UYVY422" }
97 };
98
99 return formats_map[format];
100 }
101
string_from_channel(Channel channel)102 const std::string &string_from_channel(Channel channel)
103 {
104 static std::map<Channel, const std::string> channels_map =
105 {
106 { Channel::UNKNOWN, "UNKNOWN" },
107 { Channel::R, "R" },
108 { Channel::G, "G" },
109 { Channel::B, "B" },
110 { Channel::A, "A" },
111 { Channel::Y, "Y" },
112 { Channel::U, "U" },
113 { Channel::V, "V" },
114 { Channel::C0, "C0" },
115 { Channel::C1, "C1" },
116 { Channel::C2, "C2" },
117 { Channel::C3, "C3" }
118 };
119
120 return channels_map[channel];
121 }
122
string_from_data_layout(DataLayout dl)123 const std::string &string_from_data_layout(DataLayout dl)
124 {
125 static std::map<DataLayout, const std::string> dl_map =
126 {
127 { DataLayout::UNKNOWN, "UNKNOWN" },
128 { DataLayout::NCHW, "NCHW" },
129 { DataLayout::NHWC, "NHWC" },
130 };
131
132 return dl_map[dl];
133 }
134
string_from_data_type(DataType dt)135 const std::string &string_from_data_type(DataType dt)
136 {
137 static std::map<DataType, const std::string> dt_map =
138 {
139 { DataType::UNKNOWN, "UNKNOWN" },
140 { DataType::S8, "S8" },
141 { DataType::U8, "U8" },
142 { DataType::S16, "S16" },
143 { DataType::U16, "U16" },
144 { DataType::S32, "S32" },
145 { DataType::U32, "U32" },
146 { DataType::S64, "S64" },
147 { DataType::U64, "U64" },
148 { DataType::F16, "F16" },
149 { DataType::F32, "F32" },
150 { DataType::F64, "F64" },
151 { DataType::SIZET, "SIZET" },
152 { DataType::QSYMM8, "QSYMM8" },
153 { DataType::QSYMM8_PER_CHANNEL, "QSYMM8_PER_CHANNEL" },
154 { DataType::QASYMM8, "QASYMM8" },
155 { DataType::QASYMM8_SIGNED, "QASYMM8_SIGNED" },
156 { DataType::QSYMM16, "QSYMM16" },
157 { DataType::QASYMM16, "QASYMM16" },
158 };
159
160 return dt_map[dt];
161 }
162
string_from_activation_func(ActivationLayerInfo::ActivationFunction act)163 const std::string &string_from_activation_func(ActivationLayerInfo::ActivationFunction act)
164 {
165 static std::map<ActivationLayerInfo::ActivationFunction, const std::string> act_map =
166 {
167 { ActivationLayerInfo::ActivationFunction::ABS, "ABS" },
168 { ActivationLayerInfo::ActivationFunction::LINEAR, "LINEAR" },
169 { ActivationLayerInfo::ActivationFunction::LOGISTIC, "LOGISTIC" },
170 { ActivationLayerInfo::ActivationFunction::RELU, "RELU" },
171 { ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, "BRELU" },
172 { ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, "LU_BRELU" },
173 { ActivationLayerInfo::ActivationFunction::LEAKY_RELU, "LRELU" },
174 { ActivationLayerInfo::ActivationFunction::SOFT_RELU, "SRELU" },
175 { ActivationLayerInfo::ActivationFunction::ELU, "ELU" },
176 { ActivationLayerInfo::ActivationFunction::SQRT, "SQRT" },
177 { ActivationLayerInfo::ActivationFunction::SQUARE, "SQUARE" },
178 { ActivationLayerInfo::ActivationFunction::TANH, "TANH" },
179 { ActivationLayerInfo::ActivationFunction::IDENTITY, "IDENTITY" },
180 { ActivationLayerInfo::ActivationFunction::HARD_SWISH, "HARD_SWISH" }
181
182 };
183
184 return act_map[act];
185 }
186
string_from_matrix_pattern(MatrixPattern pattern)187 const std::string &string_from_matrix_pattern(MatrixPattern pattern)
188 {
189 static std::map<MatrixPattern, const std::string> pattern_map =
190 {
191 { MatrixPattern::BOX, "BOX" },
192 { MatrixPattern::CROSS, "CROSS" },
193 { MatrixPattern::DISK, "DISK" },
194 { MatrixPattern::OTHER, "OTHER" },
195 };
196
197 return pattern_map[pattern];
198 }
199
string_from_non_linear_filter_function(NonLinearFilterFunction function)200 const std::string &string_from_non_linear_filter_function(NonLinearFilterFunction function)
201 {
202 static std::map<NonLinearFilterFunction, const std::string> func_map =
203 {
204 { NonLinearFilterFunction::MAX, "MAX" },
205 { NonLinearFilterFunction::MEDIAN, "MEDIAN" },
206 { NonLinearFilterFunction::MIN, "MIN" },
207 };
208
209 return func_map[function];
210 }
211
string_from_interpolation_policy(InterpolationPolicy policy)212 const std::string &string_from_interpolation_policy(InterpolationPolicy policy)
213 {
214 static std::map<InterpolationPolicy, const std::string> interpolation_policy_map =
215 {
216 { InterpolationPolicy::AREA, "AREA" },
217 { InterpolationPolicy::BILINEAR, "BILINEAR" },
218 { InterpolationPolicy::NEAREST_NEIGHBOR, "NEAREST_NEIGHBOUR" },
219 };
220
221 return interpolation_policy_map[policy];
222 }
223
string_from_border_mode(BorderMode border_mode)224 const std::string &string_from_border_mode(BorderMode border_mode)
225 {
226 static std::map<BorderMode, const std::string> border_mode_map =
227 {
228 { BorderMode::UNDEFINED, "UNDEFINED" },
229 { BorderMode::CONSTANT, "CONSTANT" },
230 { BorderMode::REPLICATE, "REPLICATE" },
231 };
232
233 return border_mode_map[border_mode];
234 }
235
string_from_norm_type(NormType type)236 const std::string &string_from_norm_type(NormType type)
237 {
238 static std::map<NormType, const std::string> norm_type_map =
239 {
240 { NormType::IN_MAP_1D, "IN_MAP_1D" },
241 { NormType::IN_MAP_2D, "IN_MAP_2D" },
242 { NormType::CROSS_MAP, "CROSS_MAP" },
243 };
244
245 return norm_type_map[type];
246 }
247
string_from_pooling_type(PoolingType type)248 const std::string &string_from_pooling_type(PoolingType type)
249 {
250 static std::map<PoolingType, const std::string> pool_type_map =
251 {
252 { PoolingType::MAX, "MAX" },
253 { PoolingType::AVG, "AVG" },
254 { PoolingType::L2, "L2" },
255 };
256
257 return pool_type_map[type];
258 }
259
string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage)260 const std::string &string_from_gemmlowp_output_stage(GEMMLowpOutputStageType output_stage)
261 {
262 static std::map<GEMMLowpOutputStageType, const std::string> output_stage_map =
263 {
264 { GEMMLowpOutputStageType::NONE, "" },
265 { GEMMLowpOutputStageType::QUANTIZE_DOWN, "quantize_down" },
266 { GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT, "quantize_down_fixedpoint" },
267 { GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT, "quantize_down_float" }
268 };
269
270 return output_stage_map[output_stage];
271 }
272
string_from_pixel_value(const PixelValue & value,const DataType data_type)273 std::string string_from_pixel_value(const PixelValue &value, const DataType data_type)
274 {
275 std::stringstream ss;
276 std::string converted_string;
277
278 switch(data_type)
279 {
280 case DataType::U8:
281 case DataType::QASYMM8:
282 // Needs conversion to 32 bit, otherwise interpreted as ASCII values
283 ss << uint32_t(value.get<uint8_t>());
284 converted_string = ss.str();
285 break;
286 case DataType::S8:
287 case DataType::QASYMM8_SIGNED:
288 case DataType::QSYMM8_PER_CHANNEL:
289 // Needs conversion to 32 bit, otherwise interpreted as ASCII values
290 ss << int32_t(value.get<int8_t>());
291 converted_string = ss.str();
292 break;
293 case DataType::U16:
294 case DataType::QASYMM16:
295 ss << value.get<uint16_t>();
296 converted_string = ss.str();
297 break;
298 case DataType::S16:
299 case DataType::QSYMM16:
300 ss << value.get<int16_t>();
301 converted_string = ss.str();
302 break;
303 case DataType::U32:
304 ss << value.get<uint32_t>();
305 converted_string = ss.str();
306 break;
307 case DataType::S32:
308 ss << value.get<int32_t>();
309 converted_string = ss.str();
310 break;
311 case DataType::F32:
312 converted_string = float_to_string_with_full_precision(value.get<float>());
313 break;
314 case DataType::F16:
315 static_assert(sizeof(half) == 2, "Half must be 16 bit");
316 ss << value.get<half>();
317 converted_string = ss.str();
318 break;
319 default:
320 ARM_COMPUTE_ERROR("Not handled");
321 }
322
323 return converted_string;
324 }
325
data_type_from_name(const std::string & name)326 DataType data_type_from_name(const std::string &name)
327 {
328 static const std::map<std::string, DataType> data_types =
329 {
330 { "f16", DataType::F16 },
331 { "f32", DataType::F32 },
332 { "qasymm8", DataType::QASYMM8 },
333 };
334
335 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
336 try
337 {
338 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
339 return data_types.at(utility::tolower(name));
340
341 #ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
342 }
343 catch(const std::out_of_range &)
344 {
345 ARM_COMPUTE_ERROR_VAR("Invalid data type name: %s", name.c_str());
346 }
347 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
348 }
349
lower_string(const std::string & val)350 std::string lower_string(const std::string &val)
351 {
352 std::string res = val;
353 std::transform(res.begin(), res.end(), res.begin(), ::tolower);
354 return res;
355 }
356
calculate_same_pad(TensorShape input_shape,TensorShape weights_shape,PadStrideInfo conv_info,DataLayout data_layout,const Size2D & dilation,const DimensionRoundingType & rounding_type)357 PadStrideInfo calculate_same_pad(TensorShape input_shape, TensorShape weights_shape, PadStrideInfo conv_info, DataLayout data_layout, const Size2D &dilation,
358 const DimensionRoundingType &rounding_type)
359 {
360 const auto &strides = conv_info.stride();
361 ARM_COMPUTE_ERROR_ON_MSG((strides.first < 1 || strides.second < 1), "Stride values should be greater than or equal to 1.");
362
363 const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
364 const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
365 const unsigned int in_width = input_shape[width_idx];
366 const unsigned int in_height = input_shape[height_idx];
367 const unsigned int kernel_width = weights_shape[width_idx];
368 const unsigned int kernel_height = weights_shape[height_idx];
369
370 // Calculate output dimensions
371 const auto is_ceil = static_cast<unsigned int>(rounding_type == DimensionRoundingType::CEIL);
372 const unsigned int out_width = ((in_width - is_ceil) + strides.first - 1) / strides.first + is_ceil;
373 const unsigned int out_height = ((in_height - is_ceil) + strides.second - 1) / strides.second + is_ceil;
374
375 // Calculate effective weights sizes
376 const int real_weight_width = (kernel_width - 1) * dilation.x() + 1;
377 const int real_weight_height = (kernel_height - 1) * dilation.y() + 1;
378
379 // Calculate total pad
380 const int pad_width = std::max(0, static_cast<int>((out_width - 1) * strides.first + real_weight_width - in_width));
381 const int pad_height = std::max(0, static_cast<int>((out_height - 1) * strides.second + real_weight_height - in_height));
382
383 // Calculate individual paddings
384 const unsigned int pad_left = pad_width / 2;
385 const unsigned int pad_top = pad_height / 2;
386 const unsigned int pad_right = pad_width - pad_left;
387 const unsigned int pad_bottom = pad_height - pad_top;
388
389 PadStrideInfo same_info(strides.first, strides.second, pad_left, pad_right, pad_top, pad_bottom, rounding_type);
390
391 // Check for correctness of predicted output shape against the one calculated using the generated info
392 const auto out_dims = scaled_dimensions(in_width, in_height, kernel_width, kernel_height, same_info, dilation);
393 ARM_COMPUTE_ERROR_ON(out_dims.first != out_width || out_dims.second != out_height);
394 ARM_COMPUTE_UNUSED(out_dims);
395
396 return same_info;
397 }
398
deconvolution_output_dimensions(unsigned int in_width,unsigned int in_height,unsigned int kernel_width,unsigned int kernel_height,const PadStrideInfo & pad_stride_info)399 std::pair<unsigned int, unsigned int> deconvolution_output_dimensions(unsigned int in_width, unsigned int in_height,
400 unsigned int kernel_width, unsigned int kernel_height,
401 const PadStrideInfo &pad_stride_info)
402 {
403 const unsigned int pad_left = pad_stride_info.pad_left();
404 const unsigned int pad_top = pad_stride_info.pad_top();
405 const unsigned int pad_right = pad_stride_info.pad_right();
406 const unsigned int pad_bottom = pad_stride_info.pad_bottom();
407 const unsigned int stride_x = pad_stride_info.stride().first;
408 const unsigned int stride_y = pad_stride_info.stride().second;
409
410 ARM_COMPUTE_ERROR_ON(in_width < 1 || in_height < 1);
411 ARM_COMPUTE_ERROR_ON(((in_width - 1) * stride_x + kernel_width) < (pad_left + pad_right));
412 ARM_COMPUTE_ERROR_ON(((in_height - 1) * stride_y + kernel_height) < (pad_top + pad_bottom));
413 const int w = stride_x * (in_width - 1) + kernel_width - (pad_left + pad_right);
414 const int h = stride_y * (in_height - 1) + kernel_height - (pad_top + pad_bottom);
415
416 return std::make_pair<unsigned int, unsigned int>(w, h);
417 }
418
scaled_dimensions(int width,int height,int kernel_width,int kernel_height,const PadStrideInfo & pad_stride_info,const Size2D & dilation)419 std::pair<unsigned int, unsigned int> scaled_dimensions(int width, int height,
420 int kernel_width, int kernel_height,
421 const PadStrideInfo &pad_stride_info,
422 const Size2D &dilation)
423 {
424 const int dilation_x = dilation.x();
425 const int dilation_y = dilation.y();
426 const int pad_left = pad_stride_info.pad_left();
427 const int pad_top = pad_stride_info.pad_top();
428 const int pad_right = pad_stride_info.pad_right();
429 const int pad_bottom = pad_stride_info.pad_bottom();
430 const int stride_x = pad_stride_info.stride().first;
431 const int stride_y = pad_stride_info.stride().second;
432 int w = 0;
433 int h = 0;
434 switch(pad_stride_info.round())
435 {
436 case DimensionRoundingType::FLOOR:
437 w = static_cast<int>(std::floor((static_cast<float>(width + pad_left + pad_right - (dilation_x * (kernel_width - 1) + 1)) / stride_x) + 1));
438 h = static_cast<int>(std::floor((static_cast<float>(height + pad_top + pad_bottom - (dilation_y * (kernel_height - 1) + 1)) / stride_y) + 1));
439 break;
440 case DimensionRoundingType::CEIL:
441 w = static_cast<int>(std::ceil((static_cast<float>(width + pad_left + pad_right - (dilation_x * (kernel_width - 1) + 1)) / stride_x) + 1));
442 h = static_cast<int>(std::ceil((static_cast<float>(height + pad_top + pad_bottom - (dilation_y * (kernel_height - 1) + 1)) / stride_y) + 1));
443 break;
444 default:
445 ARM_COMPUTE_ERROR("Unsupported rounding type");
446 }
447
448 w = std::max(1, w);
449 h = std::max(1, h);
450 return std::make_pair(static_cast<unsigned int>(w), static_cast<unsigned int>(h));
451 }
452
needs_serialized_reduction(ReductionOperation op,DataType dt,unsigned int axis)453 bool needs_serialized_reduction(ReductionOperation op, DataType dt, unsigned int axis)
454 {
455 const bool is_min_max = (op == ReductionOperation::MAX || op == ReductionOperation::MIN);
456 const bool is_quantized_type = is_data_type_quantized(dt);
457 const bool is_first_dim = (axis == 0);
458
459 return !is_first_dim || is_min_max || is_quantized_type;
460 }
461
get_softmax_output_quantization_info(DataType input_type,bool is_log)462 QuantizationInfo get_softmax_output_quantization_info(DataType input_type, bool is_log)
463 {
464 // Note: Output quantization info for softmax should always have
465 // * Softmax with QASYMM8: scale = 1/256, offset = 0
466 // * Softmax with QASYMM8_SIGNED: scale = 1/256, offset = -128
467 // * LogSoftmax with QASYMM8: scale = 1/256, offset = 0
468 // * LogSoftmax with QASYMM8_SIGNED: scale = 16/256, offset = 127
469 if(is_data_type_quantized_asymmetric_signed(input_type))
470 {
471 if(is_log)
472 {
473 return QuantizationInfo(16.f / 256, 127);
474 }
475 else
476 {
477 return QuantizationInfo(1.f / 256, -128);
478 }
479 }
480 return QuantizationInfo(1.f / 256, 0);
481 }
482
get_quantized_activation_min_max(ActivationLayerInfo act_info,DataType data_type,UniformQuantizationInfo oq_info)483 std::pair<int32_t, int32_t> get_quantized_activation_min_max(ActivationLayerInfo act_info, DataType data_type, UniformQuantizationInfo oq_info)
484 {
485 const bool is_qasymm8_signed = is_data_type_quantized_asymmetric_signed(data_type);
486 const auto a = act_info.a();
487 const auto b = act_info.b();
488 const int a_int = is_qasymm8_signed ? quantize_qasymm8_signed(a, oq_info) : quantize_qasymm8(a, oq_info);
489 const int b_int = is_qasymm8_signed ? quantize_qasymm8_signed(b, oq_info) : quantize_qasymm8(b, oq_info);
490 const auto type_max_value = std::get<1>(get_min_max(data_type)).get<int32_t>();
491
492 const int32_t min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? oq_info.offset : b_int;
493 const int32_t max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? type_max_value : a_int;
494
495 return std::make_pair(min_activation, max_activation);
496 }
497
get_padding_info(std::initializer_list<const ITensor * > tensors)498 std::unordered_map<const ITensorInfo *, PaddingSize> get_padding_info(std::initializer_list<const ITensor *> tensors)
499 {
500 std::unordered_map<const ITensorInfo *, PaddingSize> res;
501
502 for(const ITensor *tensor : tensors)
503 {
504 if(tensor)
505 {
506 res.insert({ tensor->info(), tensor->info()->padding() });
507 }
508 }
509
510 return res;
511 }
512
get_padding_info(std::initializer_list<const ITensorInfo * > infos)513 std::unordered_map<const ITensorInfo *, PaddingSize> get_padding_info(std::initializer_list<const ITensorInfo *> infos)
514 {
515 std::unordered_map<const ITensorInfo *, PaddingSize> res;
516
517 for(const ITensorInfo *info : infos)
518 {
519 if(info)
520 {
521 res.insert({ info, info->padding() });
522 }
523 }
524
525 return res;
526 }
527
has_padding_changed(const std::unordered_map<const ITensorInfo *,PaddingSize> & padding_map)528 bool has_padding_changed(const std::unordered_map<const ITensorInfo *, PaddingSize> &padding_map)
529 {
530 return std::find_if(padding_map.begin(), padding_map.end(), [](const std::pair<const ITensorInfo *, PaddingSize> &padding_info)
531 {
532 return (padding_info.first->padding() != padding_info.second);
533 })
534 != padding_map.end();
535 }
536
537 #ifdef ARM_COMPUTE_ASSERTS_ENABLED
print_consecutive_elements(std::ostream & s,DataType dt,const uint8_t * ptr,unsigned int n,int stream_width,const std::string & element_delim)538 void print_consecutive_elements(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n, int stream_width, const std::string &element_delim)
539 {
540 switch(dt)
541 {
542 case DataType::U8:
543 case DataType::QASYMM8:
544 print_consecutive_elements_impl<uint8_t>(s, ptr, n, stream_width, element_delim);
545 break;
546 case DataType::S8:
547 case DataType::QSYMM8:
548 case DataType::QASYMM8_SIGNED:
549 case DataType::QSYMM8_PER_CHANNEL:
550 print_consecutive_elements_impl<int8_t>(s, reinterpret_cast<const int8_t *>(ptr), n, stream_width, element_delim);
551 break;
552 case DataType::U16:
553 case DataType::QASYMM16:
554 print_consecutive_elements_impl<uint16_t>(s, reinterpret_cast<const uint16_t *>(ptr), n, stream_width, element_delim);
555 break;
556 case DataType::S16:
557 case DataType::QSYMM16:
558 print_consecutive_elements_impl<int16_t>(s, reinterpret_cast<const int16_t *>(ptr), n, stream_width, element_delim);
559 break;
560 case DataType::U32:
561 print_consecutive_elements_impl<uint32_t>(s, reinterpret_cast<const uint32_t *>(ptr), n, stream_width, element_delim);
562 break;
563 case DataType::S32:
564 print_consecutive_elements_impl<int32_t>(s, reinterpret_cast<const int32_t *>(ptr), n, stream_width, element_delim);
565 break;
566 case DataType::BFLOAT16:
567 print_consecutive_elements_impl<bfloat16>(s, reinterpret_cast<const bfloat16 *>(ptr), n, stream_width, element_delim);
568 break;
569 case DataType::F16:
570 print_consecutive_elements_impl<half>(s, reinterpret_cast<const half *>(ptr), n, stream_width, element_delim);
571 break;
572 case DataType::F32:
573 print_consecutive_elements_impl<float>(s, reinterpret_cast<const float *>(ptr), n, stream_width, element_delim);
574 break;
575 default:
576 ARM_COMPUTE_ERROR("Undefined element size for given data type");
577 }
578 }
579
max_consecutive_elements_display_width(std::ostream & s,DataType dt,const uint8_t * ptr,unsigned int n)580 int max_consecutive_elements_display_width(std::ostream &s, DataType dt, const uint8_t *ptr, unsigned int n)
581 {
582 switch(dt)
583 {
584 case DataType::U8:
585 case DataType::QASYMM8:
586 return max_consecutive_elements_display_width_impl<uint8_t>(s, ptr, n);
587 case DataType::S8:
588 case DataType::QSYMM8:
589 case DataType::QASYMM8_SIGNED:
590 case DataType::QSYMM8_PER_CHANNEL:
591 return max_consecutive_elements_display_width_impl<int8_t>(s, reinterpret_cast<const int8_t *>(ptr), n);
592 case DataType::U16:
593 case DataType::QASYMM16:
594 return max_consecutive_elements_display_width_impl<uint16_t>(s, reinterpret_cast<const uint16_t *>(ptr), n);
595 case DataType::S16:
596 case DataType::QSYMM16:
597 return max_consecutive_elements_display_width_impl<int16_t>(s, reinterpret_cast<const int16_t *>(ptr), n);
598 case DataType::U32:
599 return max_consecutive_elements_display_width_impl<uint32_t>(s, reinterpret_cast<const uint32_t *>(ptr), n);
600 case DataType::S32:
601 return max_consecutive_elements_display_width_impl<int32_t>(s, reinterpret_cast<const int32_t *>(ptr), n);
602 case DataType::BFLOAT16:
603 return max_consecutive_elements_display_width_impl<bfloat16>(s, reinterpret_cast<const bfloat16 *>(ptr), n);
604 case DataType::F16:
605 return max_consecutive_elements_display_width_impl<half>(s, reinterpret_cast<const half *>(ptr), n);
606 case DataType::F32:
607 return max_consecutive_elements_display_width_impl<float>(s, reinterpret_cast<const float *>(ptr), n);
608 default:
609 ARM_COMPUTE_ERROR("Undefined element size for given data type");
610 }
611 return 0;
612 }
613 #endif /* ARM_COMPUTE_ASSERTS_ENABLED */
614
615 } // namespace arm_compute