• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright (c) 2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef SRC_CORE_HELPERS_SCALEHELPERS_H
25 #define SRC_CORE_HELPERS_SCALEHELPERS_H
26 
27 #include "arm_compute/core/Error.h"
28 #include "arm_compute/core/QuantizationInfo.h"
29 
30 #include <algorithm>
31 #include <cmath>
32 #include <cstddef>
33 #include <cstdint>
34 
35 namespace arm_compute
36 {
37 namespace scale_helpers
38 {
39 /** Computes bilinear interpolation using the pointer to the top-left pixel and the pixel's distance between
40  * the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
41  *
42  * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
43  * @param[in] stride    Stride to access the bottom-left and bottom-right pixel values
44  * @param[in] dx        Pixel's distance between the X real coordinate and the smallest X following integer
45  * @param[in] dy        Pixel's distance between the Y real coordinate and the smallest Y following integer
46  *
47  * @note dx and dy must be in the range [0, 1.0]
48  *
49  * @return The bilinear interpolated pixel value
50  */
51 template <typename T>
delta_bilinear_c1(const T * pixel_ptr,size_t stride,float dx,float dy)52 inline T delta_bilinear_c1(const T *pixel_ptr, size_t stride, float dx, float dy)
53 {
54     ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
55 
56     const float dx1 = 1.0f - dx;
57     const float dy1 = 1.0f - dy;
58 
59     const T a00 = *pixel_ptr;
60     const T a01 = *(pixel_ptr + 1);
61     const T a10 = *(pixel_ptr + stride);
62     const T a11 = *(pixel_ptr + stride + 1);
63 
64     const float w1 = dx1 * dy1;
65     const float w2 = dx * dy1;
66     const float w3 = dx1 * dy;
67     const float w4 = dx * dy;
68 
69     return static_cast<T>(a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4);
70 }
71 
72 /** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
73  * the real coordinates and the smallest following integer coordinates. Input must be QASYMM8 and in single channel format.
74  *
75  * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
76  * @param[in] stride    Stride to access the bottom-left and bottom-right pixel values
77  * @param[in] dx        Pixel's distance between the X real coordinate and the smallest X following integer
78  * @param[in] dy        Pixel's distance between the Y real coordinate and the smallest Y following integer
79  * @param[in] iq_info   Input QuantizationInfo
80  * @param[in] oq_info   Output QuantizationInfo
81  *
82  * @note dx and dy must be in the range [0, 1.0]
83  *
84  * @return The bilinear interpolated pixel value
85  */
delta_bilinear_c1_quantized(const uint8_t * pixel_ptr,size_t stride,float dx,float dy,UniformQuantizationInfo iq_info,UniformQuantizationInfo oq_info)86 inline uint8_t delta_bilinear_c1_quantized(const uint8_t *pixel_ptr, size_t stride, float dx, float dy,
87                                            UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
88 {
89     ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
90 
91     const float dx1 = 1.0f - dx;
92     const float dy1 = 1.0f - dy;
93 
94     const float a00 = dequantize_qasymm8(*pixel_ptr, iq_info);
95     const float a01 = dequantize_qasymm8(*(pixel_ptr + 1), iq_info);
96     const float a10 = dequantize_qasymm8(*(pixel_ptr + stride), iq_info);
97     const float a11 = dequantize_qasymm8(*(pixel_ptr + stride + 1), iq_info);
98 
99     const float w1  = dx1 * dy1;
100     const float w2  = dx * dy1;
101     const float w3  = dx1 * dy;
102     const float w4  = dx * dy;
103     float       res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
104     return static_cast<uint8_t>(quantize_qasymm8(res, oq_info));
105 }
106 
107 /** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
108  * the real coordinates and the smallest following integer coordinates. Input must be QASYMM8_SIGNED and in single channel format.
109  *
110  * @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
111  * @param[in] stride    Stride to access the bottom-left and bottom-right pixel values
112  * @param[in] dx        Pixel's distance between the X real coordinate and the smallest X following integer
113  * @param[in] dy        Pixel's distance between the Y real coordinate and the smallest Y following integer
114  * @param[in] iq_info   Input QuantizationInfo
115  * @param[in] oq_info   Output QuantizationInfo
116  *
117  * @note dx and dy must be in the range [0, 1.0]
118  *
119  * @return The bilinear interpolated pixel value
120  */
delta_bilinear_c1_quantized(const int8_t * pixel_ptr,size_t stride,float dx,float dy,UniformQuantizationInfo iq_info,UniformQuantizationInfo oq_info)121 inline int8_t delta_bilinear_c1_quantized(const int8_t *pixel_ptr, size_t stride, float dx, float dy,
122                                           UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
123 {
124     ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
125 
126     const float dx1 = 1.0f - dx;
127     const float dy1 = 1.0f - dy;
128 
129     const float a00 = dequantize_qasymm8_signed(*pixel_ptr, iq_info);
130     const float a01 = dequantize_qasymm8_signed(*(pixel_ptr + 1), iq_info);
131     const float a10 = dequantize_qasymm8_signed(*(pixel_ptr + stride), iq_info);
132     const float a11 = dequantize_qasymm8_signed(*(pixel_ptr + stride + 1), iq_info);
133 
134     const float w1  = dx1 * dy1;
135     const float w2  = dx * dy1;
136     const float w3  = dx1 * dy;
137     const float w4  = dx * dy;
138     float       res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
139     return static_cast<int8_t>(quantize_qasymm8_signed(res, oq_info));
140 }
141 
142 /** Computes linear interpolation using the pointer to the top pixel and the pixel's distance between
143  * the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
144  *
145  * @param[in] pixel_ptr Pointer to the top pixel value of a single channel input.
146  * @param[in] stride    Stride to access the bottom pixel value
147  * @param[in] dy        Pixel's distance between the Y real coordinate and the smallest Y following integer
148  *
149  * @note dy must be in the range [0, 1.0]
150  *
151  * @return The linear interpolated pixel value
152  */
153 template <typename T>
delta_linear_c1_y(const T * pixel_ptr,size_t stride,float dy)154 inline T delta_linear_c1_y(const T *pixel_ptr, size_t stride, float dy)
155 {
156     ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
157 
158     const float dy1 = 1.0f - dy;
159 
160     const T a00 = *pixel_ptr;
161     const T a10 = *(pixel_ptr + stride);
162 
163     const float w1 = dy1;
164     const float w3 = dy;
165 
166     return static_cast<T>(a00 * w1 + a10 * w3);
167 }
168 
169 /** Computes linear interpolation using the pointer to the left pixel and the pixel's distance between
170  * the real coordinates and the smallest following integer coordinates. Input must be in single channel format.
171  *
172  * @param[in] pixel_ptr Pointer to the left pixel value of a single channel input.
173  * @param[in] dx        Pixel's distance between the X real coordinate and the smallest X following integer
174  *
175  * @note dx must be in the range [0, 1.0]
176  *
177  * @return The linear interpolated pixel value
178  */
179 template <typename T>
delta_linear_c1_x(const T * pixel_ptr,float dx)180 inline T delta_linear_c1_x(const T *pixel_ptr, float dx)
181 {
182     ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
183 
184     const T a00 = *pixel_ptr;
185     const T a01 = *(pixel_ptr + 1);
186 
187     const float dx1 = 1.0f - dx;
188 
189     const float w1 = dx1;
190     const float w2 = dx;
191 
192     return static_cast<T>(a00 * w1 + a01 * w2);
193 }
194 
195 /** Return the pixel at (x,y) using bilinear interpolation.
196  *
197  * @warning Only works if the iterator was created with an IImage
198  *
199  * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel input.
200  * @param[in] stride          Stride in bytes of the image;
201  * @param[in] x               X position of the wanted pixel
202  * @param[in] y               Y position of the wanted pixel
203  *
204  * @return The pixel at (x, y) using bilinear interpolation.
205  */
206 template <typename T>
pixel_bilinear_c1(const T * first_pixel_ptr,size_t stride,float x,float y)207 inline T pixel_bilinear_c1(const T *first_pixel_ptr, size_t stride, float x, float y)
208 {
209     ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
210 
211     const int32_t xi = std::floor(x);
212     const int32_t yi = std::floor(y);
213 
214     const float dx = x - xi;
215     const float dy = y - yi;
216 
217     return delta_bilinear_c1(first_pixel_ptr + xi + yi * stride, stride, dx, dy);
218 }
219 
220 /** Return the pixel at (x,y) using bilinear interpolation by clamping when out of borders. The image must be single channel input
221  *
222  * @warning Only works if the iterator was created with an IImage
223  *
224  * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel image.
225  * @param[in] stride          Stride in bytes of the image
226  * @param[in] width           Width of the image
227  * @param[in] height          Height of the image
228  * @param[in] x               X position of the wanted pixel
229  * @param[in] y               Y position of the wanted pixel
230  *
231  * @return The pixel at (x, y) using bilinear interpolation.
232  */
233 template <typename T>
234 inline uint8_t
pixel_bilinear_c1_clamp(const T * first_pixel_ptr,size_t stride,size_t width,size_t height,float x,float y)235 pixel_bilinear_c1_clamp(const T *first_pixel_ptr, size_t stride, size_t width, size_t height, float x, float y)
236 {
237     ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
238 
239     x = std::max(-1.f, std::min(x, static_cast<float>(width)));
240     y = std::max(-1.f, std::min(y, static_cast<float>(height)));
241 
242     const float xi = std::floor(x);
243     const float yi = std::floor(y);
244 
245     const float dx = x - xi;
246     const float dy = y - yi;
247 
248     if(dx == 0.0f)
249     {
250         if(dy == 0.0f)
251         {
252             return static_cast<T>(first_pixel_ptr[static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride]);
253         }
254         return delta_linear_c1_y(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride,
255                                  stride, dy);
256     }
257     if(dy == 0.0f)
258     {
259         return delta_linear_c1_x(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride,
260                                  dx);
261     }
262     return delta_bilinear_c1(first_pixel_ptr + static_cast<int32_t>(xi) + static_cast<int32_t>(yi) * stride, stride,
263                              dx, dy);
264 }
265 
266 /** Return the pixel at (x,y) using area interpolation by clamping when out of borders. The image must be single channel U8
267  *
268  * @note The interpolation area depends on the width and height ration of the input and output images
269  * @note Currently average of the contributing pixels is calculated
270  *
271  * @param[in] first_pixel_ptr Pointer to the first pixel of a single channel U8 image.
272  * @param[in] stride          Stride in bytes of the image
273  * @param[in] width           Width of the image
274  * @param[in] height          Height of the image
275  * @param[in] wr              Width ratio among the input image width and output image width.
276  * @param[in] hr              Height ratio among the input image height and output image height.
277  * @param[in] x               X position of the wanted pixel
278  * @param[in] y               Y position of the wanted pixel
279  *
280  * @return The pixel at (x, y) using area interpolation.
281  */
282 inline uint8_t
pixel_area_c1u8_clamp(const uint8_t * first_pixel_ptr,size_t stride,size_t width,size_t height,float wr,float hr,int x,int y)283 pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr,
284                       float hr, int x, int y)
285 {
286     ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
287 
288     // Calculate sampling position
289     float in_x = (x + 0.5f) * wr - 0.5f;
290     float in_y = (y + 0.5f) * hr - 0.5f;
291 
292     // Get bounding box offsets
293     int x_from = std::floor(x * wr - 0.5f - in_x);
294     int y_from = std::floor(y * hr - 0.5f - in_y);
295     int x_to   = std::ceil((x + 1) * wr - 0.5f - in_x);
296     int y_to   = std::ceil((y + 1) * hr - 0.5f - in_y);
297 
298     // Clamp position to borders
299     in_x = std::max(-1.f, std::min(in_x, static_cast<float>(width)));
300     in_y = std::max(-1.f, std::min(in_y, static_cast<float>(height)));
301 
302     // Clamp bounding box offsets to borders
303     x_from = ((in_x + x_from) < -1) ? -1 : x_from;
304     y_from = ((in_y + y_from) < -1) ? -1 : y_from;
305     x_to   = ((in_x + x_to) > width) ? (width - in_x) : x_to;
306     y_to   = ((in_y + y_to) > height) ? (height - in_y) : y_to;
307 
308     // Get pixel index
309     const int xi = std::floor(in_x);
310     const int yi = std::floor(in_y);
311 
312     // Bounding box elements in each dimension
313     const int x_elements = (x_to - x_from + 1);
314     const int y_elements = (y_to - y_from + 1);
315     ARM_COMPUTE_ERROR_ON(x_elements == 0 || y_elements == 0);
316 
317     // Sum pixels in area
318     int sum = 0;
319     for(int j = yi + y_from, je = yi + y_to; j <= je; ++j)
320     {
321         const uint8_t *ptr = first_pixel_ptr + j * stride + xi + x_from;
322         sum                = std::accumulate(ptr, ptr + x_elements, sum);
323     }
324 
325     // Return average
326     return sum / (x_elements * y_elements);
327 }
328 } // namespace scale_helpers
329 } // namespace arm_compute
330 
331 #endif /* SRC_CORE_HELPERS_SCALEHELPERS_H */
332