• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/functions/CLDirectDeconvolutionLayer.h"
25 
26 #include "arm_compute/core/CL/CLKernelLibrary.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/Utils.h"
29 #include "arm_compute/core/Validate.h"
30 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
31 #include "arm_compute/runtime/CL/CLScheduler.h"
32 #include "src/core/CL/kernels/CLDeconvolutionLayerUpsampleKernel.h"
33 #include "src/core/CL/kernels/CLFillBorderKernel.h"
34 #include "src/core/CL/kernels/CLGEMMReshapeRHSMatrixKernel.h"
35 #include "src/core/CL/kernels/CLMemsetKernel.h"
36 #include "src/core/CL/kernels/CLWeightsReshapeKernel.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 
39 #include <memory>
40 #include <tuple>
41 
42 namespace arm_compute
43 {
44 using namespace arm_compute::misc::shape_calculator;
45 
CLDirectDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)46 CLDirectDeconvolutionLayer::CLDirectDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
47     : _memory_group(std::move(memory_manager)),
48       _scale_f(),
49       _conv_f(),
50       _flip_weights(),
51       _scaled_output(),
52       _original_weights(nullptr),
53       _weights_flipped(),
54       _flip_axis(),
55       _is_prepared(false)
56 {
57 }
58 
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * bias,ITensorInfo * output,const PadStrideInfo & info,const WeightsInfo & weights_info)59 Status CLDirectDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, ITensorInfo *output, const PadStrideInfo &info,
60                                             const WeightsInfo &weights_info)
61 {
62     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
63     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED, DataType::QASYMM8, DataType::F16, DataType::F32);
64     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
65     const DataLayout data_layout = input->data_layout();
66 
67     const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
68     const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
69     const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
70 
71     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) != weights->dimension(idx_h));
72     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) < 1);
73 
74     auto out_dims = deconvolution_output_dimensions(input->dimension(idx_w), input->dimension(idx_h), weights->dimension(idx_w), weights->dimension(idx_h), info);
75 
76     const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights);
77 
78     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output, weights);
79 
80     if(bias != nullptr)
81     {
82         if(is_data_type_quantized_asymmetric(input->data_type()))
83         {
84             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
85         }
86         else
87         {
88             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
89         }
90         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, bias);
91     }
92 
93     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_w) != output_shape[idx_w], "Output's width is invalid.");
94     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_h) != output_shape[idx_h], "Output's height is invalid.");
95     ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_c) != output_shape[idx_c], "Output's depth is invalid.");
96 
97     unsigned int        deconv_pad_x    = 0;
98     unsigned int        deconv_pad_y    = 0;
99     const unsigned int  stride_x        = info.stride().first;
100     const unsigned int  stride_y        = info.stride().second;
101     const TensorShape   scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y);
102     TensorInfo          scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape).set_data_layout(data_layout));
103     const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
104 
105     ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionLayerUpsample::validate(input, &scale_out_info, info));
106     ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, weights_info));
107 
108     return Status{};
109 }
110 
configure(ICLTensor * input,ICLTensor * weights,const ICLTensor * bias,ICLTensor * output,const PadStrideInfo & info,const WeightsInfo & weights_info)111 void CLDirectDeconvolutionLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info,
112                                            const WeightsInfo &weights_info)
113 {
114     configure(CLKernelLibrary::get().get_compile_context(), input, weights, bias, output, info, weights_info);
115 }
116 
configure(const CLCompileContext & compile_context,ICLTensor * input,ICLTensor * weights,const ICLTensor * bias,ICLTensor * output,const PadStrideInfo & info,const WeightsInfo & weights_info)117 void CLDirectDeconvolutionLayer::configure(const CLCompileContext &compile_context, ICLTensor *input, ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info,
118                                            const WeightsInfo &weights_info)
119 {
120     ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
121 
122     const unsigned int pad_left   = info.pad_left();
123     const unsigned int pad_right  = info.pad_right();
124     const unsigned int pad_top    = info.pad_top();
125     const unsigned int pad_bottom = info.pad_bottom();
126     const unsigned int stride_x   = info.stride().first;
127     const unsigned int stride_y   = info.stride().second;
128 
129     const DataLayout data_layout = input->info()->data_layout();
130 
131     const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
132     const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
133 
134     _original_weights = weights;
135     _flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32));
136     _weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout));
137     _flip_weights.configure(compile_context, weights, &_weights_flipped, &_flip_axis);
138 
139     auto out_dims = deconvolution_output_dimensions(input->info()->dimension(idx_w), input->info()->dimension(idx_h), weights->info()->dimension(idx_w), weights->info()->dimension(idx_h), info);
140 
141     const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info());
142 
143     // Output auto initialization if not yet initialized
144     auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_layout(data_layout));
145 
146     // Perform validation step
147     ARM_COMPUTE_ERROR_THROW_ON(CLDirectDeconvolutionLayer::validate(input->info(), weights->info(), bias == nullptr ? nullptr : bias->info(), output->info(), info));
148 
149     _is_prepared = weights_info.retain_internal_weights();
150 
151     _memory_group.manage(&_scaled_output);
152 
153     // Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
154     unsigned int      deconv_pad_x    = 0;
155     unsigned int      deconv_pad_y    = 0;
156     const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y);
157 
158     unsigned int deconv_pad_left  = pad_right > pad_left ? pad_right - pad_left : 0;
159     unsigned int deconv_pad_right = pad_left > pad_right ? pad_left - pad_right : 0;
160     deconv_pad_x -= deconv_pad_left + deconv_pad_right;
161     ARM_COMPUTE_ERROR_ON((deconv_pad_x % 2) != 0);
162     deconv_pad_left += deconv_pad_x / 2;
163     deconv_pad_right += deconv_pad_x / 2;
164 
165     unsigned int deconv_pad_top    = pad_bottom > pad_top ? pad_bottom - pad_top : 0;
166     unsigned int deconv_pad_bottom = pad_top > pad_bottom ? pad_top - pad_bottom : 0;
167     deconv_pad_y -= deconv_pad_top + deconv_pad_bottom;
168     ARM_COMPUTE_ERROR_ON((deconv_pad_y % 2) != 0);
169     deconv_pad_top += deconv_pad_y / 2;
170     deconv_pad_bottom += deconv_pad_y / 2;
171 
172     TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info());
173     scale_out_info.set_data_layout(data_layout);
174     _scaled_output.allocator()->init(scale_out_info);
175 
176     // configure scale function
177     const PadStrideInfo upsample_info(stride_x, stride_y, deconv_pad_left, deconv_pad_right, deconv_pad_top, deconv_pad_bottom, DimensionRoundingType::FLOOR);
178     _scale_f.configure(compile_context, input, &_scaled_output, upsample_info);
179 
180     // Setup the function to convolve the upscaled output
181     const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
182     _conv_f.configure(compile_context, &_scaled_output, &_weights_flipped, bias, output, conv_info, weights_info);
183     _scaled_output.allocator()->allocate();
184 
185     // Setup flip axis data
186     _flip_axis.allocator()->allocate();
187     _flip_axis.map(true);
188     auto axis_data = reinterpret_cast<uint32_t *>(_flip_axis.buffer());
189     if(weights->info()->data_layout() == DataLayout::NHWC)
190     {
191         axis_data[0] = 1;
192         axis_data[1] = 2;
193     }
194     else
195     {
196         axis_data[0] = 0;
197         axis_data[1] = 1;
198     }
199     _flip_axis.unmap();
200 }
201 
run()202 void CLDirectDeconvolutionLayer::run()
203 {
204     prepare();
205 
206     MemoryGroupResourceScope scope_mg(_memory_group);
207 
208     _scale_f.run();
209     _conv_f.run();
210 }
211 
prepare()212 void CLDirectDeconvolutionLayer::prepare()
213 {
214     if(!_is_prepared)
215     {
216         ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
217 
218         // Run weights flipping and mark original weights tensor as unused
219         _weights_flipped.allocator()->allocate();
220         _flip_weights.run();
221         _original_weights->mark_as_unused();
222 
223         // Prepare convolution
224         _conv_f.prepare();
225 
226         // Free flipped weights
227         if(!_weights_flipped.is_used())
228         {
229             _weights_flipped.allocator()->free();
230         }
231 
232         _is_prepared = true;
233     }
234 }
235 } // namespace arm_compute
236