• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2019 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/GLES_COMPUTE/functions/GCGEMM.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/GLES_COMPUTE/GCHelpers.h"
28 #include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
29 #include "arm_compute/core/GLES_COMPUTE/kernels/GCGEMMInterleave4x4Kernel.h"
30 #include "arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixAdditionKernel.h"
31 #include "arm_compute/core/GLES_COMPUTE/kernels/GCGEMMMatrixMultiplyKernel.h"
32 #include "arm_compute/core/GLES_COMPUTE/kernels/GCGEMMTranspose1xWKernel.h"
33 #include "arm_compute/core/Helpers.h"
34 #include "arm_compute/core/TensorInfo.h"
35 #include "arm_compute/core/Types.h"
36 #include "arm_compute/core/Validate.h"
37 #include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h"
38 #include "arm_compute/runtime/ITensorAllocator.h"
39 
40 using namespace arm_compute;
41 
42 namespace
43 {
validate_arguments(const ITensorInfo * a,const ITensorInfo * b,const IGCTensor * c,const ITensorInfo * output,const float alpha,const float beta,const GEMMInfo & gemm_info=GEMMInfo ())44 Status validate_arguments(const ITensorInfo *a, const ITensorInfo *b, const IGCTensor *c, const ITensorInfo *output, const float alpha, const float beta, const GEMMInfo &gemm_info = GEMMInfo())
45 {
46     ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
47 
48     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::F16, DataType::F32);
49     ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, output);
50     ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
51     ARM_COMPUTE_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
52 
53     if(c != nullptr)
54     {
55         ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, c->info());
56         ARM_COMPUTE_ERROR_ON_MSG(a->dimension(1) != c->info()->dimension(1), "The C matrix must have the same number of rows as the matrix A");
57         ARM_COMPUTE_ERROR_ON_MSG(b->dimension(0) != c->info()->dimension(0), "The C matrix must have the same number of columns as the matrix B");
58     }
59 
60     if(output->total_size() != 0)
61     {
62         ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != output->dimension(0), "The output matrix must have the same number of columns as the matrix B");
63         ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != output->dimension(1), "The output matrix must have the same number of rows as the matrix A");
64     }
65 
66     ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(0) != b->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
67 
68     ARM_COMPUTE_UNUSED(alpha);
69     ARM_COMPUTE_UNUSED(beta);
70     ARM_COMPUTE_UNUSED(gemm_info);
71     return Status{};
72 }
73 } // namespace
74 
GCGEMM(std::shared_ptr<IMemoryManager> memory_manager)75 GCGEMM::GCGEMM(std::shared_ptr<IMemoryManager> memory_manager)
76     : _memory_group(std::move(memory_manager)), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _ma_kernel(), _tmp_a(), _tmp_b(), _original_b(nullptr), _is_interleaved_transposed(false),
77       _run_addition(false), _reshape_b_only_on_first_run(false), _is_prepared(false)
78 {
79 }
80 
configure(const IGCTensor * a,const IGCTensor * b,const IGCTensor * c,IGCTensor * output,float alpha,float beta,const GEMMInfo & gemm_info)81 void GCGEMM::configure(const IGCTensor *a, const IGCTensor *b, const IGCTensor *c, IGCTensor *output, float alpha, float beta, const GEMMInfo &gemm_info)
82 {
83     ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
84 
85     // Perform validation step
86     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(a->info(), b->info(), c, output->info(), alpha, beta, gemm_info));
87 
88     // Check if we need to reshape the matrix B only on the first run
89     _reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
90     _is_prepared                 = false;
91     _original_b                  = b;
92 
93     const IGCTensor *matrix_a = a;
94     const IGCTensor *matrix_b = b;
95 
96     // Get the GPU target
97     const GPUTarget gpu_target = GCScheduler::get().get_target();
98 
99     // Set the target for the kernels
100     _interleave_kernel.set_target(gpu_target);
101     _mm_kernel.set_target(gpu_target);
102 
103     // Arguments used by GEMMReshapeInfo
104     // If we pass the matrix A and matrix B reshaped to GCGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to GCGEMMReshapeInfo
105     // in order to know how the matrices have been reshaped
106     const int m                         = a->info()->dimension(1);
107     const int n                         = b->info()->dimension(0);
108     const int k                         = a->info()->dimension(0);
109     int       mult_transpose1xW_width   = 1;
110     int       mult_interleave4x4_height = 1;
111 
112     // If the input tensor has less than 16 rows, we run a special version of GEMM without reshaping the input tensors
113     _is_interleaved_transposed = a->info()->dimension(1) > 16;
114 
115     if(_is_interleaved_transposed)
116     {
117         matrix_a = &_tmp_a;
118         matrix_b = &_tmp_b;
119 
120         // Manage intermediate buffers
121         _memory_group.manage(&_tmp_a);
122         if(!_reshape_b_only_on_first_run)
123         {
124             _memory_group.manage(&_tmp_b);
125         }
126         // _tmp_a and _tmp_b will be auto configured in _interleave_kernel and in _transpose_kernel
127 
128         // Configure interleave kernel
129         _interleave_kernel.configure(a, &_tmp_a);
130 
131         // Configure transpose kernel
132         _transpose_kernel.configure(b, &_tmp_b);
133     }
134 
135     _mm_kernel.configure(matrix_a, matrix_b, output, alpha, _is_interleaved_transposed, GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height));
136 
137     if(_is_interleaved_transposed)
138     {
139         // Allocate intermediate tensors
140         _tmp_a.allocator()->allocate();
141         if(!_reshape_b_only_on_first_run)
142         {
143             _tmp_b.allocator()->allocate();
144         }
145     }
146 
147     // Configure matrix addition kernel
148     if(beta != 0 && c != nullptr)
149     {
150         _ma_kernel.configure(c, output, beta);
151         _run_addition = true;
152     }
153 }
154 
validate(const ITensorInfo * a,const ITensorInfo * b,const IGCTensor * c,const ITensorInfo * output,const float alpha,const float beta,const GEMMInfo & gemm_info)155 Status GCGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const IGCTensor *c, const ITensorInfo *output, const float alpha, const float beta, const GEMMInfo &gemm_info)
156 {
157     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(a, b, c, output, alpha, beta, gemm_info));
158     return Status{};
159 }
160 
run()161 void GCGEMM::run()
162 {
163     prepare();
164 
165     MemoryGroupResourceScope scope_mg(_memory_group);
166 
167     if(_is_interleaved_transposed)
168     {
169         // Run interleave kernel
170         GCScheduler::get().dispatch(_interleave_kernel, false);
171 
172         if(!_reshape_b_only_on_first_run)
173         {
174             // Run transpose kernel
175             GCScheduler::get().dispatch(_transpose_kernel, false);
176         }
177 
178         GCScheduler::get().memory_barrier();
179     }
180 
181     // Run matrix multiply kernel
182     GCScheduler::get().dispatch(_mm_kernel, !_run_addition);
183 
184     // Run matrix addition kernel
185     if(_run_addition)
186     {
187         GCScheduler::get().memory_barrier();
188         GCScheduler::get().dispatch(_ma_kernel);
189     }
190 }
191 
prepare()192 void GCGEMM::prepare()
193 {
194     if(!_is_prepared)
195     {
196         if(_is_interleaved_transposed && _reshape_b_only_on_first_run)
197         {
198             ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
199 
200             // Run transpose kernel
201             _tmp_b.allocator()->allocate();
202             GCScheduler::get().dispatch(_transpose_kernel, false);
203             GCScheduler::get().memory_barrier();
204 
205             // Mark original weights tensor as unused
206             _original_b->mark_as_unused();
207         }
208 
209         _is_prepared = true;
210     }
211 }
212