1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h"
25
26 #include "arm_compute/core/PixelValue.h"
27 #include "arm_compute/core/Utils.h"
28 #include "arm_compute/core/Validate.h"
29 #include "arm_compute/runtime/NEON/NEScheduler.h"
30 #include "arm_compute/runtime/NEON/functions/NEDirectConvolutionLayer.h"
31 #include "arm_compute/runtime/NEON/functions/NEFFTConvolutionLayer.h"
32 #include "arm_compute/runtime/NEON/functions/NEGEMMConv2d.h"
33 #include "arm_compute/runtime/NEON/functions/NEGEMMConvolutionLayer.h"
34 #include "arm_compute/runtime/NEON/functions/NEWinogradConvolutionLayer.h"
35
36 #include "support/MemorySupport.h"
37
38 #include <cmath>
39 #include <tuple>
40 #include <utility>
41
42 namespace arm_compute
43 {
NEConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)44 NEConvolutionLayer::NEConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) //NOLINT
45 : _memory_manager(std::move(memory_manager)),
46 _function()
47 {
48 }
49
configure(ITensor * input,const ITensor * weights,const ITensor * biases,ITensor * output,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,bool enable_fast_math,unsigned int num_groups)50 void NEConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
51 const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
52 {
53 // Perform validate step
54 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
55 ARM_COMPUTE_UNUSED(num_groups);
56 ARM_COMPUTE_ERROR_THROW_ON(NEConvolutionLayer::validate(input->info(), weights->info(), ((biases != nullptr) ? biases->info() : nullptr), output->info(), conv_info, weights_info, dilation, act_info,
57 enable_fast_math, num_groups));
58
59 const Conv2dInfo info(conv_info, dilation, act_info, enable_fast_math, num_groups);
60 switch(NEConvolutionLayer::get_convolution_method(input->info(), weights->info(), output->info(), conv_info, weights_info, dilation, act_info, enable_fast_math))
61 {
62 case ConvolutionMethod::WINOGRAD:
63 {
64 auto f = arm_compute::support::cpp14::make_unique<NEWinogradConvolutionLayer>(_memory_manager);
65 f->configure(input, weights, biases, output, conv_info, act_info, enable_fast_math);
66 _function = std::move(f);
67 break;
68 }
69 case ConvolutionMethod::GEMM:
70 {
71 auto f = arm_compute::support::cpp14::make_unique<NEGEMMConvolutionLayer>(_memory_manager);
72 f->configure(input, weights, biases, output, conv_info, weights_info, dilation, act_info);
73 _function = std::move(f);
74 break;
75 }
76 case ConvolutionMethod::GEMM_CONV2D:
77 {
78 auto f = arm_compute::support::cpp14::make_unique<NEGEMMConv2d>(_memory_manager);
79 f->configure(input, weights, biases, output, info);
80 _function = std::move(f);
81 break;
82 }
83 case ConvolutionMethod::DIRECT:
84 {
85 auto f = arm_compute::support::cpp14::make_unique<NEDirectConvolutionLayer>(_memory_manager);
86 f->configure(input, weights, biases, output, conv_info, act_info);
87 _function = std::move(f);
88 break;
89 }
90 case ConvolutionMethod::FFT:
91 {
92 auto f = arm_compute::support::cpp14::make_unique<NEFFTConvolutionLayer>(_memory_manager);
93 f->configure(input, weights, biases, output, conv_info, act_info);
94 _function = std::move(f);
95 break;
96 }
97 default:
98 ARM_COMPUTE_ERROR("Not supported.");
99 break;
100 }
101 }
102
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,bool enable_fast_math,unsigned int num_groups)103 Status NEConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
104 const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
105 {
106 ARM_COMPUTE_RETURN_ERROR_ON_MSG((num_groups != 1), "Grouping (num_groups != 1) is not supported on NEON");
107
108 const Conv2dInfo info(conv_info, dilation, act_info, enable_fast_math, num_groups);
109 switch(NEConvolutionLayer::get_convolution_method(input, weights, output, conv_info, weights_info, dilation, act_info, enable_fast_math))
110 {
111 case ConvolutionMethod::WINOGRAD:
112 ARM_COMPUTE_RETURN_ON_ERROR(NEWinogradConvolutionLayer::validate(input, weights, biases, output, conv_info, act_info, enable_fast_math));
113 break;
114 case ConvolutionMethod::GEMM:
115 ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMConvolutionLayer::validate(input, weights, biases, output, conv_info, weights_info, dilation, act_info));
116 break;
117 case ConvolutionMethod::GEMM_CONV2D:
118 ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMConv2d::validate(input, weights, biases, output, info));
119 break;
120 case ConvolutionMethod::DIRECT:
121 ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayer::validate(input, weights, biases, output, conv_info, act_info));
122 break;
123 case ConvolutionMethod::FFT:
124 ARM_COMPUTE_RETURN_ON_ERROR(NEFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info));
125 break;
126 default:
127 ARM_COMPUTE_ERROR("Not supported.");
128 break;
129 }
130
131 return Status{};
132 }
133
get_convolution_method(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * output,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,bool enable_fast_math)134 ConvolutionMethod NEConvolutionLayer::get_convolution_method(const ITensorInfo *input, const ITensorInfo *weights,
135 const ITensorInfo *output, const PadStrideInfo &conv_info,
136 const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math)
137 {
138 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, weights);
139 ARM_COMPUTE_UNUSED(weights_info);
140
141 const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
142 const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
143 const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
144
145 const Conv2dInfo info(conv_info, dilation, act_info, enable_fast_math, 1);
146
147 /* Input spatial dims, kernel size, IFM/OFM, conv info*/
148 using ConvolutionConfiguration = std::tuple<Size2D, Size2D, Size2D, PadStrideInfo>;
149 using ConfigurationMethod = std::pair<ConvolutionConfiguration, ConvolutionMethod>;
150
151 const std::vector<ConfigurationMethod> known_configs =
152 {
153 // Alexnet
154 ConfigurationMethod(ConvolutionConfiguration(Size2D(27U, 27U), Size2D(5U, 5U), Size2D(48U, 128U), PadStrideInfo(1U, 1U, 2U, 2U)), ConvolutionMethod::GEMM),
155 // VGG16 / VGG19
156 ConfigurationMethod(ConvolutionConfiguration(Size2D(224U, 224U), Size2D(3U, 3U), Size2D(3U, 64U), PadStrideInfo(1U, 1U, 1U, 1U)), ConvolutionMethod::GEMM),
157 // Mobilenet 224
158 ConfigurationMethod(ConvolutionConfiguration(Size2D(224U, 224U), Size2D(3U, 3U), Size2D(3U, 32U), PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::FLOOR)), ConvolutionMethod::GEMM),
159 // Mobilenet 160
160 ConfigurationMethod(ConvolutionConfiguration(Size2D(160U, 160U), Size2D(3U, 3U), Size2D(3U, 24U), PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::FLOOR)), ConvolutionMethod::GEMM)
161 };
162
163 const auto find_config = [&](ConfigurationMethod c)
164 {
165 const ConvolutionConfiguration config = c.first;
166 const PadStrideInfo info = std::get<3>(config);
167
168 return std::get<0>(config) == Size2D(input->dimension(idx_w), input->dimension(idx_h)) && std::get<1>(config) == Size2D(weights->dimension(idx_w), weights->dimension(idx_h))
169 && std::get<2>(config) == Size2D(weights->dimension(idx_c), weights->dimension(3)) && info.pad_top() == conv_info.pad_top() && info.pad_right() == conv_info.pad_right()
170 && info.pad_bottom() == conv_info.pad_bottom() && info.pad_left() == conv_info.pad_left() && info.stride() == conv_info.stride();
171 };
172
173 std::vector<ConfigurationMethod>::const_iterator found;
174 if((found = std::find_if(known_configs.begin(), known_configs.end(), find_config)) != known_configs.end())
175 {
176 return (*found).second;
177 }
178
179 if(dilation != Size2D(1U, 1U))
180 {
181 return ConvolutionMethod::GEMM;
182 }
183 else
184 {
185 // SRGAN
186 // Output might not be initialized when it is an internal tensor of the layer using the convolution
187 if(input->total_size() > 1e7 && (weights->dimension(idx_h) > 7)
188 && (NEDirectConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info)))
189 {
190 return ConvolutionMethod::DIRECT;
191 }
192 if((weights->dimension(idx_h) > 7) && (input->dimension(idx_c) > output->dimension(idx_c)) && (NEFFTConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info)))
193 {
194 return ConvolutionMethod::FFT;
195 }
196 if(input->dimension(idx_c) < 16)
197 {
198 return ConvolutionMethod::GEMM;
199 }
200
201 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
202 // This heuristics only applies to F16 data type on A55r1
203 if(NEScheduler::get().cpu_info().get_cpu_model() == CPUModel::A55r1 && enable_fast_math && input->data_type() == DataType::F16)
204 {
205 // Exclude known bad winograd configs (and defaults to GEMM)
206 const std::vector<ConvolutionConfiguration> known_bad_winograd_f16_with_fastmath_configs =
207 {
208 // Squeezenet_V1_1 fire2 and fire3
209 ConvolutionConfiguration(Size2D(56U, 56U), Size2D(3U, 3U), Size2D(16U, 64U), PadStrideInfo(1U, 1U, 1U, 1U)),
210 // Squeezenet_V1_1 fire6 and fire7
211 ConvolutionConfiguration(Size2D(14U, 14U), Size2D(3U, 3U), Size2D(48U, 192U), PadStrideInfo(1U, 1U, 1U, 1U)),
212 // Squeezenet_V1_1 fire8 and fire9
213 ConvolutionConfiguration(Size2D(14U, 14U), Size2D(3U, 3U), Size2D(64U, 256U), PadStrideInfo(1U, 1U, 1U, 1U)),
214 };
215 const auto find_conv_config = [&](ConvolutionConfiguration c)
216 {
217 const PadStrideInfo info = std::get<3>(c);
218
219 return std::get<0>(c) == Size2D(input->dimension(idx_w), input->dimension(idx_h)) && std::get<1>(c) == Size2D(weights->dimension(idx_w), weights->dimension(idx_h))
220 && std::get<2>(c) == Size2D(weights->dimension(idx_c), weights->dimension(3)) && info.pad_top() == conv_info.pad_top() && info.pad_right() == conv_info.pad_right()
221 && info.pad_bottom() == conv_info.pad_bottom() && info.pad_left() == conv_info.pad_left() && info.stride() == conv_info.stride();
222 };
223
224 bool found_bad = std::find_if(known_bad_winograd_f16_with_fastmath_configs.begin(), known_bad_winograd_f16_with_fastmath_configs.end(),
225 find_conv_config)
226 != known_bad_winograd_f16_with_fastmath_configs.end();
227 if(found_bad)
228 {
229 return ConvolutionMethod::GEMM;
230 }
231 }
232 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
233 // For 1x1 convolutions run the default GEMM
234 if(weights->dimension(idx_w) == 1 && weights->dimension(idx_h) == 1)
235 {
236 return ConvolutionMethod::GEMM;
237 }
238
239 if(bool(NEWinogradConvolutionLayer::validate(input, weights, nullptr, output, conv_info, act_info, enable_fast_math)))
240 {
241 return ConvolutionMethod::WINOGRAD;
242 }
243 if(bool(NEGEMMConv2d::validate(input, weights, nullptr, output, info)))
244 {
245 return ConvolutionMethod::GEMM_CONV2D;
246 }
247 return ConvolutionMethod::GEMM;
248 }
249 }
250
run()251 void NEConvolutionLayer::run()
252 {
253 prepare();
254 _function->run();
255 }
256
prepare()257 void NEConvolutionLayer::prepare()
258 {
259 _function->prepare();
260 }
261 } // namespace arm_compute
262