• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NEHOGMultiDetection.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/TensorInfo.h"
28 #include "arm_compute/core/Validate.h"
29 #include "arm_compute/runtime/NEON/NEScheduler.h"
30 #include "arm_compute/runtime/Tensor.h"
31 #include "src/core/NEON/kernels/NEDerivativeKernel.h"
32 #include "src/core/NEON/kernels/NEFillBorderKernel.h"
33 #include "src/core/NEON/kernels/NEHOGDescriptorKernel.h"
34 
35 namespace arm_compute
36 {
37 NEHOGMultiDetection::~NEHOGMultiDetection() = default;
38 
NEHOGMultiDetection(std::shared_ptr<IMemoryManager> memory_manager)39 NEHOGMultiDetection::NEHOGMultiDetection(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
40     : _memory_group(std::move(memory_manager)),
41       _gradient_kernel(),
42       _orient_bin_kernel(),
43       _block_norm_kernel(),
44       _hog_detect_kernel(),
45       _non_maxima_kernel(),
46       _hog_space(),
47       _hog_norm_space(),
48       _detection_windows(),
49       _mag(),
50       _phase(),
51       _non_maxima_suppression(false),
52       _num_orient_bin_kernel(0),
53       _num_block_norm_kernel(0),
54       _num_hog_detect_kernel(0)
55 {
56 }
57 
configure(ITensor * input,const IMultiHOG * multi_hog,IDetectionWindowArray * detection_windows,const ISize2DArray * detection_window_strides,BorderMode border_mode,uint8_t constant_border_value,float threshold,bool non_maxima_suppression,float min_distance)58 void NEHOGMultiDetection::configure(ITensor *input, const IMultiHOG *multi_hog, IDetectionWindowArray *detection_windows, const ISize2DArray *detection_window_strides, BorderMode border_mode,
59                                     uint8_t constant_border_value, float threshold, bool non_maxima_suppression, float min_distance)
60 {
61     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
62     ARM_COMPUTE_ERROR_ON_INVALID_MULTI_HOG(multi_hog);
63     ARM_COMPUTE_ERROR_ON(nullptr == detection_windows);
64     ARM_COMPUTE_ERROR_ON(detection_window_strides->num_values() != multi_hog->num_models());
65 
66     const size_t       width      = input->info()->dimension(Window::DimX);
67     const size_t       height     = input->info()->dimension(Window::DimY);
68     const TensorShape &shape_img  = input->info()->tensor_shape();
69     const size_t       num_models = multi_hog->num_models();
70     PhaseType          phase_type = multi_hog->model(0)->info()->phase_type();
71 
72     size_t prev_num_bins     = multi_hog->model(0)->info()->num_bins();
73     Size2D prev_cell_size    = multi_hog->model(0)->info()->cell_size();
74     Size2D prev_block_size   = multi_hog->model(0)->info()->block_size();
75     Size2D prev_block_stride = multi_hog->model(0)->info()->block_stride();
76 
77     /* Check if NEHOGOrientationBinningKernel and NEHOGBlockNormalizationKernel kernels can be skipped for a specific HOG data-object
78      *
79      * 1) NEHOGOrientationBinningKernel and NEHOGBlockNormalizationKernel are skipped if the cell size and the number of bins don't change.
80      *        Since "multi_hog" is sorted,it is enough to check the HOG descriptors at level "ith" and level "(i-1)th
81      * 2) NEHOGBlockNormalizationKernel is skipped if the cell size, the number of bins and block size do not change.
82      *         Since "multi_hog" is sorted,it is enough to check the HOG descriptors at level "ith" and level "(i-1)th
83      *
84      * @note Since the orientation binning and block normalization kernels can be skipped, we need to keep track of the input to process for each kernel
85      *       with "input_orient_bin", "input_hog_detect" and "input_block_norm"
86      */
87     std::vector<size_t> input_orient_bin;
88     std::vector<size_t> input_hog_detect;
89     std::vector<std::pair<size_t, size_t>> input_block_norm;
90 
91     input_orient_bin.push_back(0);
92     input_hog_detect.push_back(0);
93     input_block_norm.emplace_back(0, 0);
94 
95     for(size_t i = 1; i < num_models; ++i)
96     {
97         size_t cur_num_bins     = multi_hog->model(i)->info()->num_bins();
98         Size2D cur_cell_size    = multi_hog->model(i)->info()->cell_size();
99         Size2D cur_block_size   = multi_hog->model(i)->info()->block_size();
100         Size2D cur_block_stride = multi_hog->model(i)->info()->block_stride();
101 
102         if((cur_num_bins != prev_num_bins) || (cur_cell_size.width != prev_cell_size.width) || (cur_cell_size.height != prev_cell_size.height))
103         {
104             prev_num_bins     = cur_num_bins;
105             prev_cell_size    = cur_cell_size;
106             prev_block_size   = cur_block_size;
107             prev_block_stride = cur_block_stride;
108 
109             // Compute orientation binning and block normalization kernels. Update input to process
110             input_orient_bin.push_back(i);
111             input_block_norm.emplace_back(i, input_orient_bin.size() - 1);
112         }
113         else if((cur_block_size.width != prev_block_size.width) || (cur_block_size.height != prev_block_size.height) || (cur_block_stride.width != prev_block_stride.width)
114                 || (cur_block_stride.height != prev_block_stride.height))
115         {
116             prev_block_size   = cur_block_size;
117             prev_block_stride = cur_block_stride;
118 
119             // Compute block normalization kernel. Update input to process
120             input_block_norm.emplace_back(i, input_orient_bin.size() - 1);
121         }
122 
123         // Update input to process for hog detector kernel
124         input_hog_detect.push_back(input_block_norm.size() - 1);
125     }
126 
127     _detection_windows      = detection_windows;
128     _non_maxima_suppression = non_maxima_suppression;
129     _num_orient_bin_kernel  = input_orient_bin.size(); // Number of NEHOGOrientationBinningKernel kernels to compute
130     _num_block_norm_kernel  = input_block_norm.size(); // Number of NEHOGBlockNormalizationKernel kernels to compute
131     _num_hog_detect_kernel  = input_hog_detect.size(); // Number of NEHOGDetector functions to compute
132 
133     _orient_bin_kernel.clear();
134     _block_norm_kernel.clear();
135     _hog_detect_kernel.clear();
136     _hog_space.clear();
137     _hog_norm_space.clear();
138 
139     _orient_bin_kernel.resize(_num_orient_bin_kernel);
140     _block_norm_kernel.resize(_num_block_norm_kernel);
141     _hog_detect_kernel.resize(_num_hog_detect_kernel);
142     _hog_space.resize(_num_orient_bin_kernel);
143     _hog_norm_space.resize(_num_block_norm_kernel);
144     _non_maxima_kernel = CPPDetectionWindowNonMaximaSuppressionKernel();
145 
146     // Allocate tensors for magnitude and phase
147     TensorInfo info_mag(shape_img, Format::S16);
148     _mag.allocator()->init(info_mag);
149 
150     TensorInfo info_phase(shape_img, Format::U8);
151     _phase.allocator()->init(info_phase);
152 
153     // Manage intermediate buffers
154     _memory_group.manage(&_mag);
155     _memory_group.manage(&_phase);
156 
157     // Initialise gradient kernel
158     _gradient_kernel.configure(input, &_mag, &_phase, phase_type, border_mode, constant_border_value);
159 
160     // Configure NETensor for the HOG space and orientation binning kernel
161     for(size_t i = 0; i < _num_orient_bin_kernel; ++i)
162     {
163         const size_t idx_multi_hog = input_orient_bin[i];
164 
165         // Get the corresponding cell size and number of bins
166         const Size2D &cell     = multi_hog->model(idx_multi_hog)->info()->cell_size();
167         const size_t  num_bins = multi_hog->model(idx_multi_hog)->info()->num_bins();
168 
169         // Calculate number of cells along the x and y directions for the hog_space
170         const size_t num_cells_x = width / cell.width;
171         const size_t num_cells_y = height / cell.height;
172 
173         // TensorShape of hog space
174         TensorShape shape_hog_space = input->info()->tensor_shape();
175         shape_hog_space.set(Window::DimX, num_cells_x);
176         shape_hog_space.set(Window::DimY, num_cells_y);
177 
178         // Allocate HOG space
179         TensorInfo info_space(shape_hog_space, num_bins, DataType::F32);
180         _hog_space[i].allocator()->init(info_space);
181 
182         // Manage intermediate buffers
183         _memory_group.manage(&_hog_space[i]);
184 
185         // Initialise orientation binning kernel
186         _orient_bin_kernel[i].configure(&_mag, &_phase, &_hog_space[i], multi_hog->model(idx_multi_hog)->info());
187     }
188 
189     // Allocate intermediate tensors
190     _mag.allocator()->allocate();
191     _phase.allocator()->allocate();
192 
193     // Configure NETensor for the normalized HOG space and block normalization kernel
194     for(size_t i = 0; i < _num_block_norm_kernel; ++i)
195     {
196         const size_t idx_multi_hog  = input_block_norm[i].first;
197         const size_t idx_orient_bin = input_block_norm[i].second;
198 
199         // Allocate normalized HOG space
200         TensorInfo tensor_info(*(multi_hog->model(idx_multi_hog)->info()), width, height);
201         _hog_norm_space[i].allocator()->init(tensor_info);
202 
203         // Manage intermediate buffers
204         _memory_group.manage(&_hog_norm_space[i]);
205 
206         // Initialize block normalization kernel
207         _block_norm_kernel[i].configure(&_hog_space[idx_orient_bin], &_hog_norm_space[i], multi_hog->model(idx_multi_hog)->info());
208     }
209 
210     // Allocate intermediate tensors
211     for(size_t i = 0; i < _num_orient_bin_kernel; ++i)
212     {
213         _hog_space[i].allocator()->allocate();
214     }
215 
216     // Configure HOG detector kernel
217     for(size_t i = 0; i < _num_hog_detect_kernel; ++i)
218     {
219         const size_t idx_block_norm = input_hog_detect[i];
220 
221         _hog_detect_kernel[i].configure(&_hog_norm_space[idx_block_norm], multi_hog->model(i), detection_windows, detection_window_strides->at(i), threshold, i);
222     }
223 
224     // Configure non maxima suppression kernel
225     _non_maxima_kernel.configure(_detection_windows, min_distance);
226 
227     // Allocate intermediate tensors
228     for(size_t i = 0; i < _num_block_norm_kernel; ++i)
229     {
230         _hog_norm_space[i].allocator()->allocate();
231     }
232 }
233 
run()234 void NEHOGMultiDetection::run()
235 {
236     ARM_COMPUTE_ERROR_ON_MSG(_detection_windows == nullptr, "Unconfigured function");
237 
238     MemoryGroupResourceScope scope_mg(_memory_group);
239 
240     // Reset detection window
241     _detection_windows->clear();
242 
243     // Run gradient
244     _gradient_kernel.run();
245 
246     // Run orientation binning kernel
247     for(auto &kernel : _orient_bin_kernel)
248     {
249         NEScheduler::get().schedule(&kernel, Window::DimY);
250     }
251 
252     // Run block normalization kernel
253     for(auto &kernel : _block_norm_kernel)
254     {
255         NEScheduler::get().schedule(&kernel, Window::DimY);
256     }
257 
258     // Run HOG detector kernel
259     for(auto &kernel : _hog_detect_kernel)
260     {
261         kernel.run();
262     }
263 
264     // Run non-maxima suppression kernel if enabled
265     if(_non_maxima_suppression)
266     {
267         NEScheduler::get().schedule(&_non_maxima_kernel, Window::DimY);
268     }
269 }
270 } // namespace arm_compute
271