• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "arm_compute/runtime/NEON/functions/NERNNLayer.h"
26 
27 #include "arm_compute/core/Error.h"
28 #include "arm_compute/core/TensorInfo.h"
29 #include "arm_compute/core/Types.h"
30 #include "arm_compute/core/Validate.h"
31 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
32 #include "arm_compute/runtime/NEON/NEScheduler.h"
33 #include "src/core/NEON/kernels/NEConvertFullyConnectedWeightsKernel.h"
34 #include "src/core/NEON/kernels/NEConvertQuantizedSignednessKernel.h"
35 #include "src/core/NEON/kernels/NECopyKernel.h"
36 #include "src/core/NEON/kernels/NEFlattenLayerKernel.h"
37 #include "src/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
38 #include "src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h"
39 #include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h"
40 #include "src/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.h"
41 #include "src/core/NEON/kernels/NEGEMMLowpReductionKernel.h"
42 #include "src/core/NEON/kernels/NEGEMMMatrixAdditionKernel.h"
43 #include "src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h"
44 #include "src/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
45 #include "support/MemorySupport.h"
46 
47 namespace arm_compute
48 {
49 NERNNLayer::~NERNNLayer() = default;
50 
NERNNLayer(std::shared_ptr<IMemoryManager> memory_manager)51 NERNNLayer::NERNNLayer(std::shared_ptr<IMemoryManager> memory_manager)
52     : _memory_group(std::move(memory_manager)), _gemm_state_f(), _add_f(), _activation(), _fully_connected(memory_manager), _copy_kernel(), _fully_connected_out(), _gemm_output(), _add_output(),
53       _is_prepared(false)
54 {
55 }
56 
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * recurrent_weights,const ITensorInfo * bias,const ITensorInfo * hidden_state,const ITensorInfo * output,const ActivationLayerInfo & info)57 Status NERNNLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *recurrent_weights, const ITensorInfo *bias, const ITensorInfo *hidden_state,
58                             const ITensorInfo *output, const ActivationLayerInfo &info)
59 {
60     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, recurrent_weights, bias, hidden_state, output);
61     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::F16, DataType::F32);
62 
63     const int idx_width  = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
64     const int idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
65     ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(idx_width) != weights->dimension(idx_width));
66     ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() != 2);
67     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_height) != recurrent_weights->dimension(idx_width));
68     ARM_COMPUTE_RETURN_ERROR_ON(recurrent_weights->dimension(idx_width) != recurrent_weights->dimension(idx_height));
69     ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() != 1);
70     ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(idx_width) != weights->dimension(idx_height));
71     ARM_COMPUTE_RETURN_ERROR_ON(hidden_state->dimension(idx_width) != weights->dimension(idx_height));
72     ARM_COMPUTE_RETURN_ERROR_ON(hidden_state->dimension(idx_height) != input->dimension(idx_height));
73     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), hidden_state->tensor_shape());
74 
75     auto shape_info = TensorInfo(misc::shape_calculator::compute_rnn_shape(recurrent_weights, hidden_state->dimension(idx_height)), 1, input->data_type());
76 
77     ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayer::validate(input, weights, bias, &shape_info));
78     ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&shape_info, &shape_info, &shape_info, ConvertPolicy::SATURATE));
79     ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(&shape_info, &shape_info, info));
80 
81     return Status{};
82 }
83 
configure(const ITensor * input,const ITensor * weights,const ITensor * recurrent_weights,const ITensor * bias,ITensor * hidden_state,ITensor * output,ActivationLayerInfo & info)84 void NERNNLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *recurrent_weights, const ITensor *bias, ITensor *hidden_state, ITensor *output,
85                            ActivationLayerInfo &info)
86 {
87     ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, recurrent_weights, bias, hidden_state, output);
88     ARM_COMPUTE_ERROR_THROW_ON(NERNNLayer::validate(input->info(), weights->info(), recurrent_weights->info(), bias->info(), hidden_state->info(), output->info(), info));
89 
90     const int   idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
91     TensorShape shape      = misc::shape_calculator::compute_rnn_shape(recurrent_weights->info(), hidden_state->info()->dimension(idx_height));
92 
93     _is_prepared = false;
94 
95     // Manage intermediate buffers and configure
96     _fully_connected_out.allocator()->init(TensorInfo(shape, 1, input->info()->data_type()));
97     _gemm_output.allocator()->init(TensorInfo(shape, 1, input->info()->data_type()));
98 
99     // Manage intermediate buffers and configure
100     _memory_group.manage(&_fully_connected_out);
101     _fully_connected.configure(input, weights, bias, &_fully_connected_out);
102 
103     _memory_group.manage(&_gemm_output);
104     _gemm_state_f.configure(hidden_state, recurrent_weights, nullptr, &_gemm_output, 1.f, 0.f);
105 
106     _add_output.allocator()->init(TensorInfo(shape, 1, input->info()->data_type()));
107     _memory_group.manage(&_add_output);
108 
109     _add_f.configure(&_fully_connected_out, &_gemm_output, &_add_output, ConvertPolicy::SATURATE);
110 
111     _fully_connected_out.allocator()->allocate();
112     _gemm_output.allocator()->allocate();
113 
114     _activation.configure(&_add_output, hidden_state, info);
115     _add_output.allocator()->allocate();
116 
117     _copy_kernel = arm_compute::support::cpp14::make_unique<NECopyKernel>();
118     _copy_kernel->configure(hidden_state, output);
119 }
120 
run()121 void NERNNLayer::run()
122 {
123     prepare();
124 
125     MemoryGroupResourceScope scope_mg(_memory_group);
126 
127     _fully_connected.run();
128 
129     _gemm_state_f.run();
130 
131     _add_f.run();
132     _activation.run();
133 
134     // copy hidden out to output
135     NEScheduler::get().schedule(_copy_kernel.get(), Window::DimY);
136 }
137 
prepare()138 void NERNNLayer::prepare()
139 {
140     if(!_is_prepared)
141     {
142         _fully_connected.prepare();
143         _gemm_state_f.prepare();
144 
145         _is_prepared = true;
146     }
147 }
148 } // namespace arm_compute
149