1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "arm_compute/runtime/NEON/functions/NEWinogradConvolutionLayer.h"
25
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Utils.h"
28 #include "arm_compute/core/Validate.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "arm_compute/runtime/NEON/NEScheduler.h"
31 #include "arm_compute/runtime/NEON/functions/NEGEMMAssemblyDispatch.h"
32 #include "src/core/CPP/Validate.h"
33 #include "src/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
34 #include "src/core/NEON/kernels/NEGEMMMatrixAdditionKernel.h"
35 #include "src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h"
36 #include "src/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
37 #include "src/core/NEON/kernels/NEWinogradConvolutionLayerKernel.h"
38 #include "support/MemorySupport.h"
39
40 #include "src/core/NEON/kernels/convolution/common/utils.hpp"
41 #include "src/core/NEON/kernels/convolution/winograd/winograd.hpp"
42
43 namespace arm_compute
44 {
45 namespace
46 {
validate_kernel_3x3(const Size2D input_dims,const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)47 inline Status validate_kernel_3x3(const Size2D input_dims, const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
48 const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
49 {
50 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
51 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
52
53 if(input->data_type() == DataType::F32)
54 {
55 if(input_dims.width > 4 && input_dims.height > 4)
56 {
57 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 4, 4, 3, 3>::validate(input, input0, winograd_info)));
58 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 4, 4, 3, 3>::validate(weights, input1, winograd_info)));
59 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 4, 4, 3, 3>::validate(batched_mm_output, biases, output, winograd_info)));
60 }
61 else
62 {
63 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 2, 2, 3, 3>::validate(input, input0, winograd_info)));
64 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 2, 2, 3, 3>::validate(weights, input1, winograd_info)));
65 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 2, 2, 3, 3>::validate(batched_mm_output, biases, output, winograd_info)));
66 }
67 }
68 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
69 else if(input->data_type() == DataType::F16)
70 {
71 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<__fp16, 4, 4, 3, 3>::validate(input, input0, winograd_info)));
72 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<__fp16, 4, 4, 3, 3>::validate(weights, input1, winograd_info)));
73 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<__fp16, 4, 4, 3, 3>::validate(batched_mm_output, biases, output, winograd_info)));
74 }
75 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
76
77 if(act_info.enabled())
78 {
79 NEActivationLayer::validate(output, nullptr, act_info);
80 }
81 return Status{};
82 }
83
validate_kernel_5x5(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)84 inline Status validate_kernel_5x5(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
85 const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
86 {
87 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 2, 2, 5, 5>::validate(input, input0, winograd_info)));
88 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 2, 2, 5, 5>::validate(weights, input1, winograd_info)));
89 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 2, 2, 5, 5>::validate(batched_mm_output, biases, output, winograd_info)));
90 if(act_info.enabled())
91 {
92 NEActivationLayer::validate(output, nullptr, act_info);
93 }
94 return Status{};
95 }
96
validate_kernel_3x1(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)97 inline Status validate_kernel_3x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
98 const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
99 {
100 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
101 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 1, 6, 1, 3>::validate(input, input0, winograd_info)));
102 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 1, 6, 1, 3>::validate(weights, input1, winograd_info)));
103 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 1, 6, 1, 3>::validate(batched_mm_output, biases, output, winograd_info)));
104 if(act_info.enabled())
105 {
106 NEActivationLayer::validate(output, nullptr, act_info);
107 }
108 return Status{};
109 }
110
validate_kernel_1x3(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)111 inline Status validate_kernel_1x3(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
112 const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
113 {
114 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
115 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 6, 1, 3, 1>::validate(input, input0, winograd_info)));
116 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 6, 1, 3, 1>::validate(weights, input1, winograd_info)));
117 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 6, 1, 3, 1>::validate(batched_mm_output, biases, output, winograd_info)));
118
119 if(act_info.enabled())
120 {
121 NEActivationLayer::validate(output, nullptr, act_info);
122 }
123 return Status{};
124 }
125
validate_kernel_5x1(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)126 inline Status validate_kernel_5x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
127 const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
128 {
129 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
130 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 1, 4, 1, 5>::validate(input, input0, winograd_info)));
131 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 1, 4, 1, 5>::validate(weights, input1, winograd_info)));
132 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 1, 4, 1, 5>::validate(batched_mm_output, biases, output, winograd_info)));
133 if(act_info.enabled())
134 {
135 NEActivationLayer::validate(output, nullptr, act_info);
136 }
137 return Status{};
138 }
validate_kernel_1x5(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)139 inline Status validate_kernel_1x5(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
140 const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
141 {
142 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
143 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 4, 1, 5, 1>::validate(input, input0, winograd_info)));
144 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 4, 1, 5, 1>::validate(weights, input1, winograd_info)));
145 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 4, 1, 5, 1>::validate(batched_mm_output, biases, output, winograd_info)));
146 if(act_info.enabled())
147 {
148 NEActivationLayer::validate(output, nullptr, act_info);
149 }
150 return Status{};
151 }
152
validate_kernel_7x1(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)153 inline Status validate_kernel_7x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
154 const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
155 {
156 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
157 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 1, 2, 1, 7>::validate(input, input0, winograd_info)));
158 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 1, 2, 1, 7>::validate(weights, input1, winograd_info)));
159 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 1, 2, 1, 7>::validate(batched_mm_output, biases, output, winograd_info)));
160 if(act_info.enabled())
161 {
162 NEActivationLayer::validate(output, nullptr, act_info);
163 }
164 return Status{};
165 }
166
validate_kernel_1x7(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)167 inline Status validate_kernel_1x7(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
168 const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
169 {
170 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
171 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 2, 1, 7, 1>::validate(input, input0, winograd_info)));
172 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 2, 1, 7, 1>::validate(weights, input1, winograd_info)));
173 ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 2, 1, 7, 1>::validate(batched_mm_output, biases, output, winograd_info)));
174
175 if(act_info.enabled())
176 {
177 NEActivationLayer::validate(output, nullptr, act_info);
178 }
179 return Status{};
180 }
181
internal_get_input_shape(const arm_compute::ITensor * input)182 inline Tensor4DShape internal_get_input_shape(const arm_compute::ITensor *input)
183 {
184 const DataLayout data_layout = input->info()->data_layout();
185 const int in_width = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH));
186 const int in_height = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT));
187 const int in_channels = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL));
188 const int in_batches = input->info()->dimension(3);
189
190 return Tensor4DShape{ in_batches, in_height, in_width, in_channels };
191 }
192
validate_arguments(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & conv_info)193 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info)
194 {
195 ARM_COMPUTE_UNUSED(output);
196 ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
197
198 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd layer only supports unit strides.");
199 if(biases != nullptr)
200 {
201 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
202 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
203 }
204 return INEWinogradLayerTransformWeightsKernel::validate(input, weights);
205 }
206
winograd_output_tile(const Size2D & input_dims,const Size2D & kernel_dims,DataType data_type)207 Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataType data_type)
208 {
209 Size2D output_tile = Size2D{};
210 if(kernel_dims == Size2D(3U, 3U))
211 {
212 output_tile = (input_dims.width <= 4 || input_dims.height <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U);
213 if(data_type == DataType::F16)
214 {
215 output_tile = Size2D(4U, 4U);
216 }
217 }
218 else if(kernel_dims == Size2D(5U, 5U))
219 {
220 output_tile = Size2D(2U, 2U);
221 }
222 else if(kernel_dims == Size2D(1U, 3U))
223 {
224 output_tile = Size2D(1U, 6U);
225 }
226 else if(kernel_dims == Size2D(3U, 1U))
227 {
228 output_tile = Size2D(6U, 1U);
229 }
230 else if(kernel_dims == Size2D(1U, 5U))
231 {
232 output_tile = Size2D(1U, 4U);
233 }
234 else if(kernel_dims == Size2D(5U, 1U))
235 {
236 output_tile = Size2D(4U, 1U);
237 }
238 else if(kernel_dims == Size2D(7U, 1U))
239 {
240 output_tile = Size2D(2U, 1U);
241 }
242 else if(kernel_dims == Size2D(1U, 7U))
243 {
244 output_tile = Size2D(1U, 2U);
245 }
246 return output_tile;
247 }
248
check_support_fast_math(const Size2D & output_tile,const Size2D & kernel_size,DataType data_type)249 bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size, DataType data_type)
250 {
251 // Check if we want to configure a Winograd configuration which requires fast math
252 using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;
253
254 const std::vector<WinogradConfiguration> fast_math_winograd_f16 =
255 {
256 WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3))
257 };
258
259 const std::vector<WinogradConfiguration> fast_math_winograd_f32 =
260 {
261 WinogradConfiguration(std::pair<int, int>(2, 2), std::pair<int, int>(5, 5)),
262 WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5))
263 };
264
265 auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
266 std::pair<int, int>(kernel_size.width, kernel_size.height));
267
268 switch(data_type)
269 {
270 case DataType::F16:
271 return std::find(fast_math_winograd_f16.begin(), fast_math_winograd_f16.end(), p) != fast_math_winograd_f16.end();
272 case DataType::F32:
273 return std::find(fast_math_winograd_f32.begin(), fast_math_winograd_f32.end(), p) != fast_math_winograd_f32.end();
274 default:
275 return false;
276 }
277 }
278
fuse_function_supported(const ActivationLayerInfo & act_info)279 inline bool fuse_function_supported(const ActivationLayerInfo &act_info)
280 {
281 return act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU || act_info.activation() == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU;
282 }
283
arm_gemm_activation_from_acl_activation(const ActivationLayerInfo & act_info)284 arm_gemm::Activation arm_gemm_activation_from_acl_activation(const ActivationLayerInfo &act_info)
285 {
286 switch(act_info.activation())
287 {
288 case ActivationLayerInfo::ActivationFunction::RELU:
289 {
290 return arm_gemm::Activation(arm_gemm::Activation::Type::ReLU, act_info.a(), act_info.b());
291 }
292 case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
293 {
294 return arm_gemm::Activation(arm_gemm::Activation::Type::BoundedReLU, act_info.a(), act_info.b());
295 }
296 default:
297 {
298 return arm_gemm::Activation(arm_gemm::Activation::Type::None);
299 }
300 }
301 }
302 } //namespace
303
NEWinogradConvolutionLayer(const std::shared_ptr<IMemoryManager> & memory_manager)304 NEWinogradConvolutionLayer::NEWinogradConvolutionLayer(const std::shared_ptr<IMemoryManager> &memory_manager)
305 : _memory_group(memory_manager), _gemm_function(memory_manager), _transform_input_kernel(nullptr), _transform_output_kernel(nullptr), _transform_weights_kernel(nullptr), _activationlayer_function(),
306 _permute_input(), _permute_weights(), _permute_output(), _input_transformed(), _output_transformed(), _input_workspace(), _output_workspace(), _kernel_storage(), _input_nhwc(), _output_nhwc(),
307 _weights_hwio(), _input(), _weights(), _output(), _is_prepared(false), _is_activationlayer_enabled(false)
308 {
309 }
310
configure(const ITensor * input,const ITensor * weights,const ITensor * biases,ITensor * output,const PadStrideInfo & conv_info,const ActivationLayerInfo & act_info,bool enable_fast_math)311 void NEWinogradConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info,
312 bool enable_fast_math)
313 {
314 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
315 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info));
316
317 // Get indices for the width and height
318 const DataLayout data_layout = input->info()->data_layout();
319 const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
320 const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
321 const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
322
323 const Size2D input_dims = Size2D(input->info()->dimension(width_idx), input->info()->dimension(height_idx));
324 const Size2D kernel_size = Size2D(weights->info()->dimension(width_idx), weights->info()->dimension(height_idx));
325 const DataType data_type = input->info()->data_type();
326 const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, data_type);
327
328 // Check if the Winograd configuration requires fast math
329 if(!enable_fast_math)
330 {
331 ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size, data_type),
332 "This Winograd configuration requires enable_fast_math=true");
333 }
334
335 _weights = weights;
336 _input = input;
337 _output = output;
338 _is_prepared = false;
339
340 int n_gemms = 0;
341 int N_BLOCK = 0; // Size of block used by GEMM.
342
343 std::unique_ptr<INEWinogradLayerTransformInputKernel> transform_input_kernel;
344 std::unique_ptr<INEWinogradLayerTransformWeightsKernel> transform_weights_kernel;
345 std::unique_ptr<INEWinogradLayerTransformOutputKernel> transform_output_kernel;
346
347 if(data_type == DataType::F32)
348 {
349 if(kernel_size == Size2D(3, 3))
350 {
351 if(input->info()->dimension(width_idx) > 4 && input->info()->dimension(height_idx) > 4)
352 {
353 using config = NEWinogradLayerConfiguration<float, float, 4, 4, 3, 3>;
354 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
355 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
356 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
357 n_gemms = config::WinogradBase::N_GEMMS;
358 N_BLOCK = config::WinogradConv::N_BLOCK;
359 }
360 else
361 {
362 using config = NEWinogradLayerConfiguration<float, float, 2, 2, 3, 3>;
363 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
364 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
365 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
366 n_gemms = config::WinogradBase::N_GEMMS;
367 N_BLOCK = config::WinogradConv::N_BLOCK;
368 }
369 }
370 else if(kernel_size == Size2D(5, 5))
371 {
372 using config = NEWinogradLayerConfiguration<float, float, 2, 2, 5, 5>;
373 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
374 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
375 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
376 n_gemms = config::WinogradBase::N_GEMMS;
377 N_BLOCK = config::WinogradConv::N_BLOCK;
378 }
379 else if(kernel_size == Size2D(1, 3))
380 {
381 using config = NEWinogradLayerConfiguration<float, float, 6, 1, 3, 1>;
382 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
383 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
384 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
385 n_gemms = config::WinogradBase::N_GEMMS;
386 N_BLOCK = config::WinogradConv::N_BLOCK;
387 }
388 else if(kernel_size == Size2D(3, 1))
389 {
390 using config = NEWinogradLayerConfiguration<float, float, 1, 6, 1, 3>;
391 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
392 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
393 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
394 n_gemms = config::WinogradBase::N_GEMMS;
395 N_BLOCK = config::WinogradConv::N_BLOCK;
396 }
397 else if(kernel_size == Size2D(1, 5))
398 {
399 using config = NEWinogradLayerConfiguration<float, float, 4, 1, 5, 1>;
400 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
401 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
402 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
403 n_gemms = config::WinogradBase::N_GEMMS;
404 N_BLOCK = config::WinogradConv::N_BLOCK;
405 }
406 else if(kernel_size == Size2D(5, 1))
407 {
408 using config = NEWinogradLayerConfiguration<float, float, 1, 4, 1, 5>;
409 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
410 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
411 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
412 n_gemms = config::WinogradBase::N_GEMMS;
413 N_BLOCK = config::WinogradConv::N_BLOCK;
414 }
415 else if(kernel_size == Size2D(1, 7))
416 {
417 using config = NEWinogradLayerConfiguration<float, float, 2, 1, 7, 1>;
418 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
419 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
420 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
421 n_gemms = config::WinogradBase::N_GEMMS;
422 N_BLOCK = config::WinogradConv::N_BLOCK;
423 }
424 else if(kernel_size == Size2D(7, 1))
425 {
426 using config = NEWinogradLayerConfiguration<float, float, 1, 2, 1, 7>;
427 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
428 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
429 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
430 n_gemms = config::WinogradBase::N_GEMMS;
431 N_BLOCK = config::WinogradConv::N_BLOCK;
432 }
433 else
434 {
435 ARM_COMPUTE_ERROR("Not supported.");
436 }
437 }
438 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
439 else if(data_type == DataType::F16)
440 {
441 if(kernel_size == Size2D(3, 3))
442 {
443 using config = NEWinogradLayerConfiguration<__fp16, __fp16, 4, 4, 3, 3>;
444 transform_input_kernel = support::cpp14::make_unique<config::TransformInputKernel>();
445 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
446 transform_output_kernel = support::cpp14::make_unique<config::TransformOutputKernel>();
447 n_gemms = config::WinogradBase::N_GEMMS;
448 N_BLOCK = config::WinogradConv::N_BLOCK;
449 }
450 else
451 {
452 ARM_COMPUTE_ERROR("Not supported.");
453 }
454 }
455 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
456
457 const PaddingType use_padding_type = (conv_info.pad_top() != 0u || conv_info.pad_left() != 0) ? PADDING_SAME : PADDING_VALID;
458 const bool use_same_padding = use_padding_type == PADDING_SAME;
459
460 // Get convolved dimensions
461 const int in_channels = input->info()->dimension(channel_idx);
462 const int out_channels = output->info()->dimension(channel_idx);
463
464 const Tensor4DShape in_shape(internal_get_input_shape(input));
465 const size_t data_type_size = input->info()->element_size();
466 // Get the memory required to instantiate a new Winograd operator.
467 constexpr size_t storage_alignment = 64;
468
469 // Kernel Storage
470 const size_t kernel_storage_size = transform_weights_kernel->get_weight_storage_size(out_channels,
471 in_channels)
472 * data_type_size;
473
474 // Input storage
475 const size_t input_storage_size = transform_input_kernel->get_input_storage_size(in_shape.n_batches, in_shape.n_channels, in_shape.n_rows, in_shape.n_cols,
476 use_same_padding)
477 * data_type_size;
478
479 // Output storage
480 const size_t output_storage_size = transform_output_kernel->get_output_storage_size(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels) * data_type_size;
481 const int kernel_matrix_stride = transform_weights_kernel->get_matrix_stride(out_channels, in_channels);
482 const int output_matrix_stride = transform_output_kernel->get_matrix_stride(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels);
483 const auto output_shape = transform_output_kernel->get_output_shape(in_shape.n_rows, in_shape.n_cols, use_padding_type == PADDING_SAME);
484 const int input_matrix_stride = transform_input_kernel->get_matrix_stride(in_shape.n_batches, in_channels, in_shape.n_rows, in_shape.n_cols, use_padding_type == PADDING_SAME);
485
486 // Configure GEMM
487 const int tile_rows = iceildiv(output_shape.first, output_tile.height);
488 const int tile_cols = iceildiv(output_shape.second, output_tile.width);
489 const int m = in_shape.n_batches * tile_rows * tile_cols;
490 const int k = in_shape.n_channels;
491 const int n = out_channels;
492 const int kernel_matrix_row_stride = roundup(out_channels, N_BLOCK);
493 const int output_matrix_row_stride = kernel_matrix_row_stride;
494
495 TensorShape a_shape(k, m, 1, n_gemms);
496 Strides a_strides(data_type_size);
497 a_strides.set(1, a_strides[0] * k);
498 //a_strides.set(2, data_type_size * input_matrix_stride / n_gemms); FIXME: This is the real batch size, but RSH's code crashes if it's not 0.
499 a_strides.set(2, 0);
500 a_strides.set(3, data_type_size * input_matrix_stride);
501
502 TensorShape b_shape(n, k, n_gemms);
503 Strides b_strides(data_type_size);
504 b_strides.set(1, data_type_size * kernel_matrix_row_stride);
505 b_strides.set(2, data_type_size * kernel_matrix_stride);
506
507 TensorShape d_shape(n, m, 1, n_gemms);
508 Strides d_strides(data_type_size);
509 d_strides.set(1, data_type_size * output_matrix_row_stride);
510 //d_strides.set(2, data_type_size * output_matrix_stride / n_gemms); FIXME: This is the real batch size, but RSH's code crashes if it's not 0.
511 d_strides.set(2, 0);
512 d_strides.set(3, data_type_size * output_matrix_stride);
513
514 TensorInfo a_info{};
515 TensorInfo b_info{};
516 TensorInfo d_info{};
517 a_info.init(a_shape, 1, data_type, a_strides, 0, input_storage_size);
518 b_info.init(b_shape, 1, data_type, b_strides, 0, kernel_storage_size);
519 d_info.init(d_shape, 1, data_type, d_strides, 0, output_storage_size);
520
521 _input_transformed.allocator()->init(a_info, storage_alignment);
522 _kernel_storage.allocator()->init(b_info, storage_alignment);
523 _output_transformed.allocator()->init(d_info, storage_alignment);
524
525 // configure and allocate dst tensor to be used to convert from winograd domain to spatial domain when calling to reshape_output()
526 TensorInfo info(TensorShape(_output->info()->dimension(2), _output->info()->dimension(0),
527 _output->info()->dimension(1), _output->info()->dimension(3)),
528 1, _output->info()->data_type());
529 _output_nhwc.allocator()->init(info);
530
531 const ITensor *input_to_use = _input;
532 ITensor *output_to_use = _output;
533 PermutationVector weights_permutation_vector(3U, 0U, 1U, 2U);
534 const unsigned int max_num_threads = NEScheduler::get().num_threads();
535
536 // Configure the kernel to transform the input tensor from NCHW -> NHWC
537 if(data_layout == DataLayout::NCHW)
538 {
539 _memory_group.manage(&_input_nhwc);
540 _permute_input.configure(input, &_input_nhwc, PermutationVector(2U, 0U, 1U));
541 input_to_use = &_input_nhwc;
542 weights_permutation_vector = PermutationVector(3U, 2U, 0U, 1U);
543 }
544
545 // Configure input transform kernel
546 _memory_group.manage(&_input_transformed);
547 _memory_group.manage(&_input_workspace);
548 transform_input_kernel->configure(input_to_use, in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, in_shape.n_channels, use_padding_type,
549 &_input_transformed, input_matrix_stride, &_input_workspace);
550 const size_t input_workspace_size = transform_input_kernel->get_working_space_size(max_num_threads);
551 TensorInfo input_workspace_info(TensorShape(input_workspace_size), 1, _input->info()->data_type());
552 _input_workspace.allocator()->init(input_workspace_info);
553 _input_workspace.allocator()->allocate();
554 if(data_layout == DataLayout::NCHW)
555 {
556 _input_nhwc.allocator()->allocate();
557 }
558
559 // Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map]
560 _permute_weights.configure(weights, &_weights_hwio, weights_permutation_vector);
561 transform_weights_kernel->configure(&_weights_hwio, &_kernel_storage, kernel_matrix_stride, out_channels, in_channels);
562
563 // Configure GEMM function
564 _memory_group.manage(&_output_transformed);
565 _gemm_function.configure(&_input_transformed, &_kernel_storage, nullptr, &_output_transformed, 1.0f, 0.f);
566 _input_transformed.allocator()->allocate();
567
568 // Configure output transform function
569 // The biases tensor has not been allocated at this point in time, the output transform will add the biases to the final result in the run() method
570 if(data_layout == DataLayout::NCHW)
571 {
572 _memory_group.manage(&_output_nhwc);
573 output_to_use = &_output_nhwc;
574 }
575 const arm_gemm::Activation activation = arm_gemm_activation_from_acl_activation(act_info);
576
577 transform_output_kernel->configure(biases,
578 &_output_transformed,
579 output_matrix_stride,
580 output_to_use,
581 in_shape.n_batches,
582 output_shape.first,
583 output_shape.second,
584 out_channels,
585 &_output_workspace,
586 activation);
587
588 const size_t output_workspace_size = transform_output_kernel->get_working_space_size(max_num_threads);
589 TensorInfo output_workspace_info(TensorShape(output_workspace_size), 1, _output->info()->data_type());
590 _output_workspace.allocator()->init(output_workspace_info);
591 _output_workspace.allocator()->allocate();
592 _output_transformed.allocator()->allocate();
593
594 // Reorder the convoluted output to ACL's ordering NCHW
595 if(data_layout == DataLayout::NCHW)
596 {
597 _permute_output.configure(&_output_nhwc, _output, PermutationVector(1U, 2U, 0U));
598 _output_nhwc.allocator()->allocate();
599 }
600
601 _transform_input_kernel = std::move(transform_input_kernel);
602 _transform_weights_kernel = std::move(transform_weights_kernel);
603 _transform_output_kernel = std::move(transform_output_kernel);
604
605 //Configure Activation Layer
606 _is_activationlayer_enabled = act_info.enabled() && !fuse_function_supported(act_info);
607 if(_is_activationlayer_enabled)
608 {
609 _activationlayer_function.configure(_output, nullptr, act_info);
610 }
611 }
612
run()613 void NEWinogradConvolutionLayer::run()
614 {
615 const DataLayout data_layout = _input->info()->data_layout();
616
617 prepare();
618
619 MemoryGroupResourceScope scope_mg(_memory_group);
620
621 if(data_layout == DataLayout::NCHW)
622 {
623 //Bring channels to the front as Winograd code expects the tensor to be in the format NHWC
624 _permute_input.run();
625 }
626
627 // Transform input tensor to the winograd domain
628 NEScheduler::get().schedule(_transform_input_kernel.get(), Window::DimX);
629
630 //Run 16 GEMMs in multiple threads, each kernel runs one or more GEMMs
631 _gemm_function.run();
632
633 // Transform output tensor to the spatial domain
634 NEScheduler::get().schedule(_transform_output_kernel.get(), Window::DimX);
635
636 if(data_layout == DataLayout::NCHW)
637 {
638 // Reorder the convoluted output to ACL's ordering NCHW
639 _permute_output.run();
640 }
641
642 if(_is_activationlayer_enabled)
643 {
644 _activationlayer_function.run();
645 }
646 }
647
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & conv_info,const ActivationLayerInfo & act_info,bool enable_fast_math)648 Status NEWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
649 const ActivationLayerInfo &act_info, bool enable_fast_math)
650 {
651 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
652 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info));
653
654 // Get indices for the width and height
655 const size_t idx_width = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
656 const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
657
658 // Input shape, kernel size and output tile
659 const Size2D input_dims = Size2D(input->dimension(idx_width), input->dimension(idx_height));
660 const Size2D kernel_size = Size2D(weights->dimension(idx_width), weights->dimension(idx_height));
661 const DataType data_type = input->data_type();
662 const Size2D output_tile = winograd_output_tile(input_dims, kernel_size, data_type);
663
664 // Check if the Winograd configuration requires fast math
665 if(!enable_fast_math)
666 {
667 ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size, data_type),
668 "This Winograd configuration requires enable_fast_math=true");
669 }
670
671 const WinogradInfo winograd_info = WinogradInfo(output_tile,
672 kernel_size,
673 input_dims,
674 conv_info,
675 input->data_layout());
676
677 // Validate input transform
678 const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
679 const TensorInfo input0 = input->clone()->set_tensor_shape(input0_shape);
680 // Validate filter transform
681 const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
682 const TensorInfo input1 = weights->clone()->set_tensor_shape(input1_shape);
683 // Validate batched matrix multiply
684 TensorShape batched_mm_output_shape = input0.tensor_shape();
685 batched_mm_output_shape[0] = input1.tensor_shape()[0];
686 const TensorInfo batched_mm_output = input0.clone()->set_tensor_shape(batched_mm_output_shape);
687
688 if(kernel_size == Size2D(3, 3))
689 {
690 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 1, "Only SAME or VALID padding supported");
691 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 1, "Only SAME or VALID padding supported");
692 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 1, "Only SAME or VALID padding supported");
693 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 1, "Only SAME or VALID padding supported");
694 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != conv_info.pad_left(), "Only SAME or VALID padding supported");
695 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_bottom(), "Only SAME or VALID padding supported");
696 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_left(), "Only SAME or VALID padding supported");
697 return validate_kernel_3x3(input_dims, input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
698 }
699 else if(kernel_size == Size2D(5, 5))
700 {
701 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 2, "Only SAME or VALID padding supported");
702 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 2, "Only SAME or VALID padding supported");
703 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 2, "Only SAME or VALID padding supported");
704 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 2, "Only SAME or VALID padding supported");
705 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != conv_info.pad_left(), "Only SAME or VALID padding supported");
706 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_bottom(), "Only SAME or VALID padding supported");
707 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_left(), "Only SAME or VALID padding supported");
708 return validate_kernel_5x5(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
709 }
710 if(kernel_size == Size2D(3, 1))
711 {
712 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 1, "Only SAME or VALID padding supported");
713 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 1, "Only SAME or VALID padding supported");
714 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported");
715 return validate_kernel_3x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
716 }
717 else if(kernel_size == Size2D(1, 3))
718 {
719 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 1, "Only SAME or VALID padding supported");
720 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 1, "Only SAME or VALID padding supported");
721 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported");
722 return validate_kernel_1x3(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
723 }
724 else if(kernel_size == Size2D(5, 1))
725 {
726 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 2, "Only SAME or VALID padding supported");
727 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 2, "Only SAME or VALID padding supported");
728 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported");
729 return validate_kernel_5x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
730 }
731 else if(kernel_size == Size2D(1, 5))
732 {
733 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 2, "Only SAME or VALID padding supported");
734 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 2, "Only SAME or VALID padding supported");
735 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported");
736 return validate_kernel_1x5(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
737 }
738 else if(kernel_size == Size2D(7, 1))
739 {
740 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 3, "Only SAME or VALID padding supported");
741 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 3, "Only SAME or VALID padding supported");
742 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported");
743 return validate_kernel_7x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
744 }
745 else if(kernel_size == Size2D(1, 7))
746 {
747 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 3, "Only SAME or VALID padding supported");
748 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 3, "Only SAME or VALID padding supported");
749 ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported");
750 return validate_kernel_1x7(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
751 }
752 else
753 {
754 ARM_COMPUTE_RETURN_ERROR_MSG("Kernel shape not supported");
755 }
756 }
757
prepare()758 void NEWinogradConvolutionLayer::prepare()
759 {
760 if(!_is_prepared)
761 {
762 // Permute weights
763 _weights_hwio.allocator()->allocate();
764 _permute_weights.run();
765 _weights->mark_as_unused();
766
767 // Transform weights
768 _kernel_storage.allocator()->allocate();
769 NEScheduler::get().schedule(_transform_weights_kernel.get(), Window::DimX);
770
771 _weights_hwio.allocator()->free();
772 _is_prepared = true;
773 }
774 }
775 } // namespace arm_compute
776