• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NEWinogradConvolutionLayer.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Utils.h"
28 #include "arm_compute/core/Validate.h"
29 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
30 #include "arm_compute/runtime/NEON/NEScheduler.h"
31 #include "arm_compute/runtime/NEON/functions/NEGEMMAssemblyDispatch.h"
32 #include "src/core/CPP/Validate.h"
33 #include "src/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
34 #include "src/core/NEON/kernels/NEGEMMMatrixAdditionKernel.h"
35 #include "src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h"
36 #include "src/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
37 #include "src/core/NEON/kernels/NEWinogradConvolutionLayerKernel.h"
38 #include "support/MemorySupport.h"
39 
40 #include "src/core/NEON/kernels/convolution/common/utils.hpp"
41 #include "src/core/NEON/kernels/convolution/winograd/winograd.hpp"
42 
43 namespace arm_compute
44 {
45 namespace
46 {
validate_kernel_3x3(const Size2D input_dims,const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)47 inline Status validate_kernel_3x3(const Size2D input_dims, const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
48                                   const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
49 {
50     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
51     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
52 
53     if(input->data_type() == DataType::F32)
54     {
55         if(input_dims.width > 4 && input_dims.height > 4)
56         {
57             ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 4, 4, 3, 3>::validate(input, input0, winograd_info)));
58             ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 4, 4, 3, 3>::validate(weights, input1, winograd_info)));
59             ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 4, 4, 3, 3>::validate(batched_mm_output, biases, output, winograd_info)));
60         }
61         else
62         {
63             ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 2, 2, 3, 3>::validate(input, input0, winograd_info)));
64             ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 2, 2, 3, 3>::validate(weights, input1, winograd_info)));
65             ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 2, 2, 3, 3>::validate(batched_mm_output, biases, output, winograd_info)));
66         }
67     }
68 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
69     else if(input->data_type() == DataType::F16)
70     {
71         ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<__fp16, 4, 4, 3, 3>::validate(input, input0, winograd_info)));
72         ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<__fp16, 4, 4, 3, 3>::validate(weights, input1, winograd_info)));
73         ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<__fp16, 4, 4, 3, 3>::validate(batched_mm_output, biases, output, winograd_info)));
74     }
75 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
76 
77     if(act_info.enabled())
78     {
79         NEActivationLayer::validate(output, nullptr, act_info);
80     }
81     return Status{};
82 }
83 
validate_kernel_5x5(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)84 inline Status validate_kernel_5x5(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
85                                   const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
86 {
87     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 2, 2, 5, 5>::validate(input, input0, winograd_info)));
88     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 2, 2, 5, 5>::validate(weights, input1, winograd_info)));
89     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 2, 2, 5, 5>::validate(batched_mm_output, biases, output, winograd_info)));
90     if(act_info.enabled())
91     {
92         NEActivationLayer::validate(output, nullptr, act_info);
93     }
94     return Status{};
95 }
96 
validate_kernel_3x1(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)97 inline Status validate_kernel_3x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
98                                   const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
99 {
100     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
101     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 1, 6, 1, 3>::validate(input, input0, winograd_info)));
102     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 1, 6, 1, 3>::validate(weights, input1, winograd_info)));
103     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 1, 6, 1, 3>::validate(batched_mm_output, biases, output, winograd_info)));
104     if(act_info.enabled())
105     {
106         NEActivationLayer::validate(output, nullptr, act_info);
107     }
108     return Status{};
109 }
110 
validate_kernel_1x3(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)111 inline Status validate_kernel_1x3(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
112                                   const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
113 {
114     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
115     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 6, 1, 3, 1>::validate(input, input0, winograd_info)));
116     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 6, 1, 3, 1>::validate(weights, input1, winograd_info)));
117     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 6, 1, 3, 1>::validate(batched_mm_output, biases, output, winograd_info)));
118 
119     if(act_info.enabled())
120     {
121         NEActivationLayer::validate(output, nullptr, act_info);
122     }
123     return Status{};
124 }
125 
validate_kernel_5x1(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)126 inline Status validate_kernel_5x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
127                                   const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
128 {
129     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
130     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 1, 4, 1, 5>::validate(input, input0, winograd_info)));
131     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 1, 4, 1, 5>::validate(weights, input1, winograd_info)));
132     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 1, 4, 1, 5>::validate(batched_mm_output, biases, output, winograd_info)));
133     if(act_info.enabled())
134     {
135         NEActivationLayer::validate(output, nullptr, act_info);
136     }
137     return Status{};
138 }
validate_kernel_1x5(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)139 inline Status validate_kernel_1x5(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
140                                   const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
141 {
142     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
143     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 4, 1, 5, 1>::validate(input, input0, winograd_info)));
144     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 4, 1, 5, 1>::validate(weights, input1, winograd_info)));
145     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 4, 1, 5, 1>::validate(batched_mm_output, biases, output, winograd_info)));
146     if(act_info.enabled())
147     {
148         NEActivationLayer::validate(output, nullptr, act_info);
149     }
150     return Status{};
151 }
152 
validate_kernel_7x1(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)153 inline Status validate_kernel_7x1(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
154                                   const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
155 {
156     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
157     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 1, 2, 1, 7>::validate(input, input0, winograd_info)));
158     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 1, 2, 1, 7>::validate(weights, input1, winograd_info)));
159     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 1, 2, 1, 7>::validate(batched_mm_output, biases, output, winograd_info)));
160     if(act_info.enabled())
161     {
162         NEActivationLayer::validate(output, nullptr, act_info);
163     }
164     return Status{};
165 }
166 
validate_kernel_1x7(const ITensorInfo * input,const TensorInfo * input0,const TensorInfo * input1,const TensorInfo * batched_mm_output,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const WinogradInfo & winograd_info,const ActivationLayerInfo & act_info)167 inline Status validate_kernel_1x7(const ITensorInfo *input, const TensorInfo *input0, const TensorInfo *input1, const TensorInfo *batched_mm_output,
168                                   const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const WinogradInfo &winograd_info, const ActivationLayerInfo &act_info)
169 {
170     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
171     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformInputKernel<float, 2, 1, 7, 1>::validate(input, input0, winograd_info)));
172     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformWeightsKernel<float, 2, 1, 7, 1>::validate(weights, input1, winograd_info)));
173     ARM_COMPUTE_RETURN_ON_ERROR((NEWinogradLayerTransformOutputKernel<float, 2, 1, 7, 1>::validate(batched_mm_output, biases, output, winograd_info)));
174 
175     if(act_info.enabled())
176     {
177         NEActivationLayer::validate(output, nullptr, act_info);
178     }
179     return Status{};
180 }
181 
internal_get_input_shape(const arm_compute::ITensor * input)182 inline Tensor4DShape internal_get_input_shape(const arm_compute::ITensor *input)
183 {
184     const DataLayout data_layout = input->info()->data_layout();
185     const int        in_width    = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH));
186     const int        in_height   = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT));
187     const int        in_channels = input->info()->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL));
188     const int        in_batches  = input->info()->dimension(3);
189 
190     return Tensor4DShape{ in_batches, in_height, in_width, in_channels };
191 }
192 
validate_arguments(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & conv_info)193 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info)
194 {
195     ARM_COMPUTE_UNUSED(output);
196     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
197 
198     ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd layer only supports unit strides.");
199     if(biases != nullptr)
200     {
201         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
202         ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
203     }
204     return INEWinogradLayerTransformWeightsKernel::validate(input, weights);
205 }
206 
winograd_output_tile(const Size2D & input_dims,const Size2D & kernel_dims,DataType data_type)207 Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims, DataType data_type)
208 {
209     Size2D output_tile = Size2D{};
210     if(kernel_dims == Size2D(3U, 3U))
211     {
212         output_tile = (input_dims.width <= 4 || input_dims.height <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U);
213         if(data_type == DataType::F16)
214         {
215             output_tile = Size2D(4U, 4U);
216         }
217     }
218     else if(kernel_dims == Size2D(5U, 5U))
219     {
220         output_tile = Size2D(2U, 2U);
221     }
222     else if(kernel_dims == Size2D(1U, 3U))
223     {
224         output_tile = Size2D(1U, 6U);
225     }
226     else if(kernel_dims == Size2D(3U, 1U))
227     {
228         output_tile = Size2D(6U, 1U);
229     }
230     else if(kernel_dims == Size2D(1U, 5U))
231     {
232         output_tile = Size2D(1U, 4U);
233     }
234     else if(kernel_dims == Size2D(5U, 1U))
235     {
236         output_tile = Size2D(4U, 1U);
237     }
238     else if(kernel_dims == Size2D(7U, 1U))
239     {
240         output_tile = Size2D(2U, 1U);
241     }
242     else if(kernel_dims == Size2D(1U, 7U))
243     {
244         output_tile = Size2D(1U, 2U);
245     }
246     return output_tile;
247 }
248 
check_support_fast_math(const Size2D & output_tile,const Size2D & kernel_size,DataType data_type)249 bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size, DataType data_type)
250 {
251     // Check if we want to configure a Winograd configuration which requires fast math
252     using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;
253 
254     const std::vector<WinogradConfiguration> fast_math_winograd_f16 =
255     {
256         WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3))
257     };
258 
259     const std::vector<WinogradConfiguration> fast_math_winograd_f32 =
260     {
261         WinogradConfiguration(std::pair<int, int>(2, 2), std::pair<int, int>(5, 5)),
262         WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5))
263     };
264 
265     auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
266                             std::pair<int, int>(kernel_size.width, kernel_size.height));
267 
268     switch(data_type)
269     {
270         case DataType::F16:
271             return std::find(fast_math_winograd_f16.begin(), fast_math_winograd_f16.end(), p) != fast_math_winograd_f16.end();
272         case DataType::F32:
273             return std::find(fast_math_winograd_f32.begin(), fast_math_winograd_f32.end(), p) != fast_math_winograd_f32.end();
274         default:
275             return false;
276     }
277 }
278 
fuse_function_supported(const ActivationLayerInfo & act_info)279 inline bool fuse_function_supported(const ActivationLayerInfo &act_info)
280 {
281     return act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU || act_info.activation() == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU;
282 }
283 
arm_gemm_activation_from_acl_activation(const ActivationLayerInfo & act_info)284 arm_gemm::Activation arm_gemm_activation_from_acl_activation(const ActivationLayerInfo &act_info)
285 {
286     switch(act_info.activation())
287     {
288         case ActivationLayerInfo::ActivationFunction::RELU:
289         {
290             return arm_gemm::Activation(arm_gemm::Activation::Type::ReLU, act_info.a(), act_info.b());
291         }
292         case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
293         {
294             return arm_gemm::Activation(arm_gemm::Activation::Type::BoundedReLU, act_info.a(), act_info.b());
295         }
296         default:
297         {
298             return arm_gemm::Activation(arm_gemm::Activation::Type::None);
299         }
300     }
301 }
302 } //namespace
303 
NEWinogradConvolutionLayer(const std::shared_ptr<IMemoryManager> & memory_manager)304 NEWinogradConvolutionLayer::NEWinogradConvolutionLayer(const std::shared_ptr<IMemoryManager> &memory_manager)
305     : _memory_group(memory_manager), _gemm_function(memory_manager), _transform_input_kernel(nullptr), _transform_output_kernel(nullptr), _transform_weights_kernel(nullptr), _activationlayer_function(),
306       _permute_input(), _permute_weights(), _permute_output(), _input_transformed(), _output_transformed(), _input_workspace(), _output_workspace(), _kernel_storage(), _input_nhwc(), _output_nhwc(),
307       _weights_hwio(), _input(), _weights(), _output(), _is_prepared(false), _is_activationlayer_enabled(false)
308 {
309 }
310 
configure(const ITensor * input,const ITensor * weights,const ITensor * biases,ITensor * output,const PadStrideInfo & conv_info,const ActivationLayerInfo & act_info,bool enable_fast_math)311 void NEWinogradConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info,
312                                            bool enable_fast_math)
313 {
314     ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
315     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info));
316 
317     // Get indices for the width and height
318     const DataLayout   data_layout = input->info()->data_layout();
319     const unsigned int width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
320     const unsigned int height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
321     const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
322 
323     const Size2D   input_dims  = Size2D(input->info()->dimension(width_idx), input->info()->dimension(height_idx));
324     const Size2D   kernel_size = Size2D(weights->info()->dimension(width_idx), weights->info()->dimension(height_idx));
325     const DataType data_type   = input->info()->data_type();
326     const Size2D   output_tile = winograd_output_tile(input_dims, kernel_size, data_type);
327 
328     // Check if the Winograd configuration requires fast math
329     if(!enable_fast_math)
330     {
331         ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size, data_type),
332                                  "This Winograd configuration requires enable_fast_math=true");
333     }
334 
335     _weights     = weights;
336     _input       = input;
337     _output      = output;
338     _is_prepared = false;
339 
340     int n_gemms = 0;
341     int N_BLOCK = 0; // Size of block used by GEMM.
342 
343     std::unique_ptr<INEWinogradLayerTransformInputKernel>   transform_input_kernel;
344     std::unique_ptr<INEWinogradLayerTransformWeightsKernel> transform_weights_kernel;
345     std::unique_ptr<INEWinogradLayerTransformOutputKernel>  transform_output_kernel;
346 
347     if(data_type == DataType::F32)
348     {
349         if(kernel_size == Size2D(3, 3))
350         {
351             if(input->info()->dimension(width_idx) > 4 && input->info()->dimension(height_idx) > 4)
352             {
353                 using config             = NEWinogradLayerConfiguration<float, float, 4, 4, 3, 3>;
354                 transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
355                 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
356                 transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
357                 n_gemms                  = config::WinogradBase::N_GEMMS;
358                 N_BLOCK                  = config::WinogradConv::N_BLOCK;
359             }
360             else
361             {
362                 using config             = NEWinogradLayerConfiguration<float, float, 2, 2, 3, 3>;
363                 transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
364                 transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
365                 transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
366                 n_gemms                  = config::WinogradBase::N_GEMMS;
367                 N_BLOCK                  = config::WinogradConv::N_BLOCK;
368             }
369         }
370         else if(kernel_size == Size2D(5, 5))
371         {
372             using config             = NEWinogradLayerConfiguration<float, float, 2, 2, 5, 5>;
373             transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
374             transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
375             transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
376             n_gemms                  = config::WinogradBase::N_GEMMS;
377             N_BLOCK                  = config::WinogradConv::N_BLOCK;
378         }
379         else if(kernel_size == Size2D(1, 3))
380         {
381             using config             = NEWinogradLayerConfiguration<float, float, 6, 1, 3, 1>;
382             transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
383             transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
384             transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
385             n_gemms                  = config::WinogradBase::N_GEMMS;
386             N_BLOCK                  = config::WinogradConv::N_BLOCK;
387         }
388         else if(kernel_size == Size2D(3, 1))
389         {
390             using config             = NEWinogradLayerConfiguration<float, float, 1, 6, 1, 3>;
391             transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
392             transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
393             transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
394             n_gemms                  = config::WinogradBase::N_GEMMS;
395             N_BLOCK                  = config::WinogradConv::N_BLOCK;
396         }
397         else if(kernel_size == Size2D(1, 5))
398         {
399             using config             = NEWinogradLayerConfiguration<float, float, 4, 1, 5, 1>;
400             transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
401             transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
402             transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
403             n_gemms                  = config::WinogradBase::N_GEMMS;
404             N_BLOCK                  = config::WinogradConv::N_BLOCK;
405         }
406         else if(kernel_size == Size2D(5, 1))
407         {
408             using config             = NEWinogradLayerConfiguration<float, float, 1, 4, 1, 5>;
409             transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
410             transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
411             transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
412             n_gemms                  = config::WinogradBase::N_GEMMS;
413             N_BLOCK                  = config::WinogradConv::N_BLOCK;
414         }
415         else if(kernel_size == Size2D(1, 7))
416         {
417             using config             = NEWinogradLayerConfiguration<float, float, 2, 1, 7, 1>;
418             transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
419             transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
420             transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
421             n_gemms                  = config::WinogradBase::N_GEMMS;
422             N_BLOCK                  = config::WinogradConv::N_BLOCK;
423         }
424         else if(kernel_size == Size2D(7, 1))
425         {
426             using config             = NEWinogradLayerConfiguration<float, float, 1, 2, 1, 7>;
427             transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
428             transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
429             transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
430             n_gemms                  = config::WinogradBase::N_GEMMS;
431             N_BLOCK                  = config::WinogradConv::N_BLOCK;
432         }
433         else
434         {
435             ARM_COMPUTE_ERROR("Not supported.");
436         }
437     }
438 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
439     else if(data_type == DataType::F16)
440     {
441         if(kernel_size == Size2D(3, 3))
442         {
443             using config             = NEWinogradLayerConfiguration<__fp16, __fp16, 4, 4, 3, 3>;
444             transform_input_kernel   = support::cpp14::make_unique<config::TransformInputKernel>();
445             transform_weights_kernel = support::cpp14::make_unique<config::TransformWeightsKernel>();
446             transform_output_kernel  = support::cpp14::make_unique<config::TransformOutputKernel>();
447             n_gemms                  = config::WinogradBase::N_GEMMS;
448             N_BLOCK                  = config::WinogradConv::N_BLOCK;
449         }
450         else
451         {
452             ARM_COMPUTE_ERROR("Not supported.");
453         }
454     }
455 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
456 
457     const PaddingType use_padding_type = (conv_info.pad_top() != 0u || conv_info.pad_left() != 0) ? PADDING_SAME : PADDING_VALID;
458     const bool        use_same_padding = use_padding_type == PADDING_SAME;
459 
460     // Get convolved dimensions
461     const int in_channels  = input->info()->dimension(channel_idx);
462     const int out_channels = output->info()->dimension(channel_idx);
463 
464     const Tensor4DShape in_shape(internal_get_input_shape(input));
465     const size_t        data_type_size = input->info()->element_size();
466     // Get the memory required to instantiate a new Winograd operator.
467     constexpr size_t storage_alignment = 64;
468 
469     // Kernel Storage
470     const size_t kernel_storage_size = transform_weights_kernel->get_weight_storage_size(out_channels,
471                                                                                          in_channels)
472                                        * data_type_size;
473 
474     // Input storage
475     const size_t input_storage_size = transform_input_kernel->get_input_storage_size(in_shape.n_batches, in_shape.n_channels, in_shape.n_rows, in_shape.n_cols,
476                                                                                      use_same_padding)
477                                       * data_type_size;
478 
479     // Output storage
480     const size_t output_storage_size  = transform_output_kernel->get_output_storage_size(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels) * data_type_size;
481     const int    kernel_matrix_stride = transform_weights_kernel->get_matrix_stride(out_channels, in_channels);
482     const int    output_matrix_stride = transform_output_kernel->get_matrix_stride(in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, out_channels);
483     const auto   output_shape         = transform_output_kernel->get_output_shape(in_shape.n_rows, in_shape.n_cols, use_padding_type == PADDING_SAME);
484     const int    input_matrix_stride  = transform_input_kernel->get_matrix_stride(in_shape.n_batches, in_channels, in_shape.n_rows, in_shape.n_cols, use_padding_type == PADDING_SAME);
485 
486     // Configure GEMM
487     const int tile_rows                = iceildiv(output_shape.first, output_tile.height);
488     const int tile_cols                = iceildiv(output_shape.second, output_tile.width);
489     const int m                        = in_shape.n_batches * tile_rows * tile_cols;
490     const int k                        = in_shape.n_channels;
491     const int n                        = out_channels;
492     const int kernel_matrix_row_stride = roundup(out_channels, N_BLOCK);
493     const int output_matrix_row_stride = kernel_matrix_row_stride;
494 
495     TensorShape a_shape(k, m, 1, n_gemms);
496     Strides     a_strides(data_type_size);
497     a_strides.set(1, a_strides[0] * k);
498     //a_strides.set(2, data_type_size * input_matrix_stride / n_gemms); FIXME: This is the real batch size, but RSH's code crashes if it's not 0.
499     a_strides.set(2, 0);
500     a_strides.set(3, data_type_size * input_matrix_stride);
501 
502     TensorShape b_shape(n, k, n_gemms);
503     Strides     b_strides(data_type_size);
504     b_strides.set(1, data_type_size * kernel_matrix_row_stride);
505     b_strides.set(2, data_type_size * kernel_matrix_stride);
506 
507     TensorShape d_shape(n, m, 1, n_gemms);
508     Strides     d_strides(data_type_size);
509     d_strides.set(1, data_type_size * output_matrix_row_stride);
510     //d_strides.set(2, data_type_size * output_matrix_stride / n_gemms); FIXME: This is the real batch size, but RSH's code crashes if it's not 0.
511     d_strides.set(2, 0);
512     d_strides.set(3, data_type_size * output_matrix_stride);
513 
514     TensorInfo a_info{};
515     TensorInfo b_info{};
516     TensorInfo d_info{};
517     a_info.init(a_shape, 1, data_type, a_strides, 0, input_storage_size);
518     b_info.init(b_shape, 1, data_type, b_strides, 0, kernel_storage_size);
519     d_info.init(d_shape, 1, data_type, d_strides, 0, output_storage_size);
520 
521     _input_transformed.allocator()->init(a_info, storage_alignment);
522     _kernel_storage.allocator()->init(b_info, storage_alignment);
523     _output_transformed.allocator()->init(d_info, storage_alignment);
524 
525     // configure and allocate dst tensor to be used to convert from winograd domain to spatial domain when calling to reshape_output()
526     TensorInfo info(TensorShape(_output->info()->dimension(2), _output->info()->dimension(0),
527                                 _output->info()->dimension(1), _output->info()->dimension(3)),
528                     1, _output->info()->data_type());
529     _output_nhwc.allocator()->init(info);
530 
531     const ITensor     *input_to_use  = _input;
532     ITensor           *output_to_use = _output;
533     PermutationVector  weights_permutation_vector(3U, 0U, 1U, 2U);
534     const unsigned int max_num_threads = NEScheduler::get().num_threads();
535 
536     // Configure the kernel to transform the input tensor from NCHW -> NHWC
537     if(data_layout == DataLayout::NCHW)
538     {
539         _memory_group.manage(&_input_nhwc);
540         _permute_input.configure(input, &_input_nhwc, PermutationVector(2U, 0U, 1U));
541         input_to_use               = &_input_nhwc;
542         weights_permutation_vector = PermutationVector(3U, 2U, 0U, 1U);
543     }
544 
545     // Configure input transform kernel
546     _memory_group.manage(&_input_transformed);
547     _memory_group.manage(&_input_workspace);
548     transform_input_kernel->configure(input_to_use, in_shape.n_batches, in_shape.n_rows, in_shape.n_cols, in_shape.n_channels, use_padding_type,
549                                       &_input_transformed, input_matrix_stride, &_input_workspace);
550     const size_t input_workspace_size = transform_input_kernel->get_working_space_size(max_num_threads);
551     TensorInfo   input_workspace_info(TensorShape(input_workspace_size), 1, _input->info()->data_type());
552     _input_workspace.allocator()->init(input_workspace_info);
553     _input_workspace.allocator()->allocate();
554     if(data_layout == DataLayout::NCHW)
555     {
556         _input_nhwc.allocator()->allocate();
557     }
558 
559     // Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map]
560     _permute_weights.configure(weights, &_weights_hwio, weights_permutation_vector);
561     transform_weights_kernel->configure(&_weights_hwio, &_kernel_storage, kernel_matrix_stride, out_channels, in_channels);
562 
563     // Configure GEMM function
564     _memory_group.manage(&_output_transformed);
565     _gemm_function.configure(&_input_transformed, &_kernel_storage, nullptr, &_output_transformed, 1.0f, 0.f);
566     _input_transformed.allocator()->allocate();
567 
568     // Configure output transform function
569     // The biases tensor has not been allocated at this point in time, the output transform will add the biases to the final result in the run() method
570     if(data_layout == DataLayout::NCHW)
571     {
572         _memory_group.manage(&_output_nhwc);
573         output_to_use = &_output_nhwc;
574     }
575     const arm_gemm::Activation activation = arm_gemm_activation_from_acl_activation(act_info);
576 
577     transform_output_kernel->configure(biases,
578                                        &_output_transformed,
579                                        output_matrix_stride,
580                                        output_to_use,
581                                        in_shape.n_batches,
582                                        output_shape.first,
583                                        output_shape.second,
584                                        out_channels,
585                                        &_output_workspace,
586                                        activation);
587 
588     const size_t output_workspace_size = transform_output_kernel->get_working_space_size(max_num_threads);
589     TensorInfo   output_workspace_info(TensorShape(output_workspace_size), 1, _output->info()->data_type());
590     _output_workspace.allocator()->init(output_workspace_info);
591     _output_workspace.allocator()->allocate();
592     _output_transformed.allocator()->allocate();
593 
594     // Reorder the convoluted output to ACL's ordering NCHW
595     if(data_layout == DataLayout::NCHW)
596     {
597         _permute_output.configure(&_output_nhwc, _output, PermutationVector(1U, 2U, 0U));
598         _output_nhwc.allocator()->allocate();
599     }
600 
601     _transform_input_kernel   = std::move(transform_input_kernel);
602     _transform_weights_kernel = std::move(transform_weights_kernel);
603     _transform_output_kernel  = std::move(transform_output_kernel);
604 
605     //Configure Activation Layer
606     _is_activationlayer_enabled = act_info.enabled() && !fuse_function_supported(act_info);
607     if(_is_activationlayer_enabled)
608     {
609         _activationlayer_function.configure(_output, nullptr, act_info);
610     }
611 }
612 
run()613 void NEWinogradConvolutionLayer::run()
614 {
615     const DataLayout data_layout = _input->info()->data_layout();
616 
617     prepare();
618 
619     MemoryGroupResourceScope scope_mg(_memory_group);
620 
621     if(data_layout == DataLayout::NCHW)
622     {
623         //Bring channels to the front as Winograd code expects the tensor to be in the format NHWC
624         _permute_input.run();
625     }
626 
627     // Transform input tensor to the winograd domain
628     NEScheduler::get().schedule(_transform_input_kernel.get(), Window::DimX);
629 
630     //Run 16 GEMMs in multiple threads, each kernel runs one or more GEMMs
631     _gemm_function.run();
632 
633     // Transform output tensor to the spatial domain
634     NEScheduler::get().schedule(_transform_output_kernel.get(), Window::DimX);
635 
636     if(data_layout == DataLayout::NCHW)
637     {
638         // Reorder the convoluted output to ACL's ordering NCHW
639         _permute_output.run();
640     }
641 
642     if(_is_activationlayer_enabled)
643     {
644         _activationlayer_function.run();
645     }
646 }
647 
validate(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & conv_info,const ActivationLayerInfo & act_info,bool enable_fast_math)648 Status NEWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
649                                             const ActivationLayerInfo &act_info, bool enable_fast_math)
650 {
651     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
652     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, conv_info));
653 
654     // Get indices for the width and height
655     const size_t idx_width  = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
656     const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
657 
658     // Input shape, kernel size and output tile
659     const Size2D   input_dims  = Size2D(input->dimension(idx_width), input->dimension(idx_height));
660     const Size2D   kernel_size = Size2D(weights->dimension(idx_width), weights->dimension(idx_height));
661     const DataType data_type   = input->data_type();
662     const Size2D   output_tile = winograd_output_tile(input_dims, kernel_size, data_type);
663 
664     // Check if the Winograd configuration requires fast math
665     if(!enable_fast_math)
666     {
667         ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size, data_type),
668                                         "This Winograd configuration requires enable_fast_math=true");
669     }
670 
671     const WinogradInfo winograd_info = WinogradInfo(output_tile,
672                                                     kernel_size,
673                                                     input_dims,
674                                                     conv_info,
675                                                     input->data_layout());
676 
677     // Validate input transform
678     const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
679     const TensorInfo  input0       = input->clone()->set_tensor_shape(input0_shape);
680     // Validate filter transform
681     const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
682     const TensorInfo  input1       = weights->clone()->set_tensor_shape(input1_shape);
683     // Validate batched matrix multiply
684     TensorShape batched_mm_output_shape = input0.tensor_shape();
685     batched_mm_output_shape[0]          = input1.tensor_shape()[0];
686     const TensorInfo batched_mm_output  = input0.clone()->set_tensor_shape(batched_mm_output_shape);
687 
688     if(kernel_size == Size2D(3, 3))
689     {
690         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 1, "Only SAME or VALID padding supported");
691         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 1, "Only SAME or VALID padding supported");
692         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 1, "Only SAME or VALID padding supported");
693         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 1, "Only SAME or VALID padding supported");
694         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != conv_info.pad_left(), "Only SAME or VALID padding supported");
695         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_bottom(), "Only SAME or VALID padding supported");
696         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_left(), "Only SAME or VALID padding supported");
697         return validate_kernel_3x3(input_dims, input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
698     }
699     else if(kernel_size == Size2D(5, 5))
700     {
701         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 2, "Only SAME or VALID padding supported");
702         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 2, "Only SAME or VALID padding supported");
703         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 2, "Only SAME or VALID padding supported");
704         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 2, "Only SAME or VALID padding supported");
705         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != conv_info.pad_left(), "Only SAME or VALID padding supported");
706         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_bottom(), "Only SAME or VALID padding supported");
707         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != conv_info.pad_left(), "Only SAME or VALID padding supported");
708         return validate_kernel_5x5(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
709     }
710     if(kernel_size == Size2D(3, 1))
711     {
712         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 1, "Only SAME or VALID padding supported");
713         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 1, "Only SAME or VALID padding supported");
714         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported");
715         return validate_kernel_3x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
716     }
717     else if(kernel_size == Size2D(1, 3))
718     {
719         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 1, "Only SAME or VALID padding supported");
720         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 1, "Only SAME or VALID padding supported");
721         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported");
722         return validate_kernel_1x3(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
723     }
724     else if(kernel_size == Size2D(5, 1))
725     {
726         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 2, "Only SAME or VALID padding supported");
727         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 2, "Only SAME or VALID padding supported");
728         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported");
729         return validate_kernel_5x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
730     }
731     else if(kernel_size == Size2D(1, 5))
732     {
733         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 2, "Only SAME or VALID padding supported");
734         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 2, "Only SAME or VALID padding supported");
735         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported");
736         return validate_kernel_1x5(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
737     }
738     else if(kernel_size == Size2D(7, 1))
739     {
740         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_left() != 3, "Only SAME or VALID padding supported");
741         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_right() != 0u && conv_info.pad_right() != 3, "Only SAME or VALID padding supported");
742         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_bottom() != 0, "Only SAME or VALID padding supported");
743         return validate_kernel_7x1(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
744     }
745     else if(kernel_size == Size2D(1, 7))
746     {
747         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_top() != 0u && conv_info.pad_top() != 3, "Only SAME or VALID padding supported");
748         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_bottom() != 0u && conv_info.pad_bottom() != 3, "Only SAME or VALID padding supported");
749         ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.pad_left() != 0u && conv_info.pad_right() != 0, "Only SAME or VALID padding supported");
750         return validate_kernel_1x7(input, &input0, &input1, &batched_mm_output, weights, biases, output, winograd_info, act_info);
751     }
752     else
753     {
754         ARM_COMPUTE_RETURN_ERROR_MSG("Kernel shape not supported");
755     }
756 }
757 
prepare()758 void NEWinogradConvolutionLayer::prepare()
759 {
760     if(!_is_prepared)
761     {
762         // Permute weights
763         _weights_hwio.allocator()->allocate();
764         _permute_weights.run();
765         _weights->mark_as_unused();
766 
767         // Transform weights
768         _kernel_storage.allocator()->allocate();
769         NEScheduler::get().schedule(_transform_weights_kernel.get(), Window::DimX);
770 
771         _weights_hwio.allocator()->free();
772         _is_prepared = true;
773     }
774 }
775 } // namespace arm_compute
776