• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/KernelDescriptors.h"
25 #include "arm_compute/core/Types.h"
26 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
27 #include "arm_compute/runtime/CL/CLTensor.h"
28 #include "arm_compute/runtime/CL/CLTensorAllocator.h"
29 #include "src/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
30 #include "tests/CL/CLAccessor.h"
31 #include "tests/CL/Helper.h"
32 #include "tests/PaddingCalculator.h"
33 #include "tests/datasets/ShapeDatasets.h"
34 #include "tests/framework/Asserts.h"
35 #include "tests/framework/Macros.h"
36 #include "tests/framework/datasets/Datasets.h"
37 #include "tests/validation/Validation.h"
38 #include "tests/validation/fixtures/GEMMFixture.h"
39 
40 namespace arm_compute
41 {
42 namespace test
43 {
44 namespace validation
45 {
46 using namespace arm_compute::misc::shape_calculator;
47 
48 // Create function for CLGEMMMatrixMultiplyKernel
49 using CLGEMMMatrixMultiplyNative = CLSynthetizeFunction<CLGEMMMatrixMultiplyKernel>;
50 
51 // Fixture for GEMMMatrixMultiplyValidationFixture
52 template <typename T>
53 using CLGEMMMatrixMultiplyNativeFixture = GEMMMatrixMultiplyValidationFixture<CLTensor, CLAccessor, T, CLGEMMMatrixMultiplyNative>;
54 
55 // Fixture for GEMMMatrixMultiply3DValidationFixture
56 template <typename T>
57 using CLGEMMMatrixMultiplyNative3DFixture = GEMMMatrixMultiply3DValidationFixture<CLTensor, CLAccessor, T, CLGEMMMatrixMultiplyNative>;
58 
59 namespace
60 {
61 // *INDENT-OFF*
62 // clang-format off
63 RelativeTolerance<float> rel_tolerance_f32(0.001f);
64 constexpr float          abs_tolerance_f32(0.0001f);
65 
66 RelativeTolerance<half> rel_tolerance_f16(half(0.2));
67 constexpr float         tolerance_num_f16 = 0.02f;
68 
69 /** Alpha values to test */
70 const auto alpha_values = framework::dataset::make("alpha", {1.0f, -0.75f} );
71 
72 /** Beta values to test */
73 const auto beta_values = framework::dataset::make("beta", {-0.35f, 0.0f} );
74 
75 /** M values to test */
76 const auto m_values = framework::dataset::make("M", {37, 1});
77 
78 /** N values to test */
79 const auto n_values = framework::dataset::make("N", {51, 1003});
80 
81 /** K values to test */
82 const auto k_values = framework::dataset::make("K", 23);
83 
84 /** M_W values to test */
85 const auto m_w_values = framework::dataset::make("M_W", 5);
86 
87 /** M_H values to test */
88 const auto m_h_values = framework::dataset::make("M_H", 7);
89 
90 /** Batch size values to test */
91 const auto b_values = framework::dataset::make("batch_size", 1, 3);
92 
93 /** Activation values to test */
94 const auto act_values = framework::dataset::make("Activation",
95 {
96     ActivationLayerInfo(),
97     ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 8.f, 2.f),
98 });
99 
100 /** Broadcast bias from vector to matrix */
101 const auto broadcast_bias_values = framework::dataset::make("broadcast_bias", { false, true } );
102 
103 /** GPU architectures values to test */
104 const auto gpu_arch_values = framework::dataset::make("GPUArch",
105 {
106     GPUTarget::MIDGARD,
107     GPUTarget::BIFROST
108 });
109 
110 /** Data types values to test in the configuration */
111 const auto data_type_values = framework::dataset::make("DataType",
112 {
113     DataType::F32,
114     DataType::F16
115 });
116 
117 /** M values to test */
118 const auto fp16_mixed_precision_values = framework::dataset::make("fp16_mixed_precision", {true, false});
119 } // namespace
120 
121 TEST_SUITE(CL)
TEST_SUITE(GEMMMatrixMultiply)122 TEST_SUITE(GEMMMatrixMultiply)
123 TEST_CASE(Negative, framework::DatasetMode::ALL)
124 {
125     // Unsupported QASYMM8 data type
126     {
127         const auto lhs                       = TensorInfo(TensorShape(13U, 12U, 1U, 1U), 1, DataType::QASYMM8);
128         const auto rhs                       = TensorInfo(TensorShape(14U, 13U, 1U, 1U), 1, DataType::QASYMM8);
129         const auto out                       = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::QASYMM8);
130         constexpr float alpha                = 1.3f;
131         constexpr float beta                 = 0.7f;
132         const bool is_interleaved_transposed = false;
133         const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(12, 14, 13, 1, 1, 0, false, false);
134         const GPUTarget gpu_target           = GPUTarget::MIDGARD;
135         const auto status    = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, nullptr, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target);
136         ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
137     }
138 
139     // Unsupported SIZE_T data type
140     {
141         const auto lhs                       = TensorInfo(TensorShape(13U, 12U, 1U, 1U), 1, DataType::SIZET);
142         const auto rhs                       = TensorInfo(TensorShape(14U, 13U, 1U, 1U), 1, DataType::SIZET);
143         const auto out                       = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::SIZET);
144         constexpr float alpha                = 1.3f;
145         constexpr float beta                 = 0.7f;
146         const bool is_interleaved_transposed = false;
147         const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(12, 14, 13, 1, 1, 0, false, false);
148         const GPUTarget gpu_target           = GPUTarget::MIDGARD;
149         const auto status    = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, nullptr, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target);
150         ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
151     }
152 
153     // Mixed precision with F32
154     {
155         const auto lhs                       = TensorInfo(TensorShape(13U, 12U, 1U, 1U), 1, DataType::F32);
156         const auto rhs                       = TensorInfo(TensorShape(14U, 13U, 1U, 1U), 1, DataType::F32);
157         const auto out                       = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::F32);
158         constexpr float alpha                = 1.3f;
159         constexpr float beta                 = 0.7f;
160         const bool is_interleaved_transposed = false;
161         const GEMMReshapeInfo reshape_info  = GEMMReshapeInfo(12, 14, 13, 1, 1, 0, false, false);
162         const GPUTarget gpu_target           = GPUTarget::MIDGARD;
163         const bool fp_mixed_precision        = true;
164         const auto status    = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, nullptr, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target, fp_mixed_precision);
165         ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
166     }
167 
168     // Max number of dimensions LHS matrix
169     {
170         const auto lhs                       = TensorInfo(TensorShape(13U, 12U, 1U, 1U, 4U), 1, DataType::F32);
171         const auto rhs                       = TensorInfo(TensorShape(14U, 13U, 1U, 1U), 1, DataType::F32);
172         const auto out                       = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::F32);
173         constexpr float alpha                = 1.3f;
174         constexpr float beta                 = 0.7f;
175         const bool is_interleaved_transposed = false;
176         const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(12, 14, 13, 1, 1, 0, false, false);
177         const GPUTarget gpu_target           = GPUTarget::MIDGARD;
178         const auto status    = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, nullptr, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target);
179         ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
180     }
181 
182     // Max number of dimensions RHS matrix
183     {
184         const auto lhs                       = TensorInfo(TensorShape(13U, 12U, 1U, 4U), 1, DataType::F32);
185         const auto rhs                       = TensorInfo(TensorShape(14U, 13U, 1U, 4U), 1, DataType::F32);
186         const auto out                       = TensorInfo(TensorShape(14U, 12U, 1U, 4U), 1, DataType::F32);
187         constexpr float alpha                = 1.3f;
188         constexpr float beta                 = 0.7f;
189         const bool is_interleaved_transposed = false;
190         const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(12, 14, 13, 1, 1, 0, false, false);
191         const GPUTarget gpu_target           = GPUTarget::MIDGARD;
192         const auto status    = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, nullptr, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target);
193         ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
194     }
195 
196     // Broadcast bias
197     {
198         const auto lhs                       = TensorInfo(TensorShape(13U, 12U, 1U, 1U), 1, DataType::F16);
199         const auto rhs                       = TensorInfo(TensorShape(14U, 13U, 1U, 1U), 1, DataType::F16);
200         // The correct shape should be bias = TensorInfo(TensorShape(14U, 1U, 1U, 1U), 1, DataType::F32);
201         const auto bias                      = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::F16);
202         const auto out                       = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::F16);
203         constexpr float alpha                = 1.3f;
204         constexpr float beta                 = 0.7f;
205         const bool is_interleaved_transposed = false;
206         const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(12, 14, 13, 1, 1, 0, false, true);
207         const GPUTarget gpu_target           = GPUTarget::MIDGARD;
208         const bool fp_mixed_precision        = false;
209         const auto status    = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, &bias, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target, fp_mixed_precision);
210         ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
211     }
212 
213     // Invalid dimensions for the bias
214     {
215         const auto lhs                       = TensorInfo(TensorShape(13U, 12U, 1U, 1U), 1, DataType::F32);
216         const auto rhs                       = TensorInfo(TensorShape(14U, 13U, 1U, 1U), 1, DataType::F32);
217         // The correct shape should be bias = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::F32);
218         const auto bias                      = TensorInfo(TensorShape(14U, 8U, 1U, 1U), 1, DataType::F32);
219         const auto out                       = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::F32);
220         constexpr float alpha                = 1.3f;
221         constexpr float beta                 = 0.7f;
222         const bool is_interleaved_transposed = false;
223         const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(12, 14, 13, 1, 1, 0, false, false);
224         const GPUTarget gpu_target           = GPUTarget::MIDGARD;
225         const bool fp_mixed_precision        = false;
226         const auto status    = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, &bias, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target, fp_mixed_precision);
227         ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
228     }
229 
230     // Invalid dimensions for the output
231     {
232         const auto lhs                       = TensorInfo(TensorShape(13U, 12U, 1U, 1U), 1, DataType::F32);
233         const auto rhs                       = TensorInfo(TensorShape(14U, 13U, 1U, 1U), 1, DataType::F32);
234         // The correct shape should be out = TensorInfo(TensorShape(14U, 12U, 1U, 1U), 1, DataType::F32);
235         const auto out                       = TensorInfo(TensorShape(14U, 7U, 1U, 1U), 1, DataType::F32);
236         constexpr float alpha                = 1.3f;
237         constexpr float beta                 = 0.7f;
238         const bool is_interleaved_transposed = false;
239         const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(12, 14, 13, 1, 1, 0, false, false);
240         const GPUTarget gpu_target           = GPUTarget::MIDGARD;
241         const auto status    = CLGEMMMatrixMultiplyKernel::validate(&lhs, &rhs, nullptr, &out, alpha, beta, is_interleaved_transposed, reshape_info, gpu_target);
242         ARM_COMPUTE_EXPECT(bool(status) == false, framework::LogLevel::ERRORS);
243     }
244 }
245 
246 TEST_SUITE(Float)
TEST_SUITE(FP32)247 TEST_SUITE(FP32)
248 
249 FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
250                 combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
251                                                                    m_values,
252                                                                    n_values),
253                                                                    k_values),
254                                                                    b_values),
255                                                                    alpha_values),
256                                                                    beta_values),
257                                                                    broadcast_bias_values),
258                                                                    framework::dataset::make("fp16_mixed_precision", false)),
259                                                                    act_values),
260                                                                    framework::dataset::make("DataType", DataType::F32)),
261                                                                    gpu_arch_values))
262 {
263     // Validate output
264     validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
265 }
266 
267 FIXTURE_DATA_TEST_CASE(RunSmall3D, CLGEMMMatrixMultiplyNative3DFixture<float>, framework::DatasetMode::ALL,
268                 combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
269                                                                    m_w_values,
270                                                                    m_h_values),
271                                                                    n_values),
272                                                                    k_values),
273                                                                    b_values),
274                                                                    alpha_values),
275                                                                    beta_values),
276                                                                    broadcast_bias_values),
277                                                                    framework::dataset::make("fp16_mixed_precision", false)),
278                                                                    act_values),
279                                                                    framework::dataset::make("DataType", DataType::F32)),
280                                                                    gpu_arch_values))
281 {
282     // Validate output
283     validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
284 }
285 
286 TEST_SUITE_END() // FP32
287 
TEST_SUITE(FP16)288 TEST_SUITE(FP16)
289 FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyNativeFixture<half>, framework::DatasetMode::ALL,
290                 combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
291                                                                    m_values,
292                                                                    n_values),
293                                                                    k_values),
294                                                                    b_values),
295                                                                    alpha_values),
296                                                                    beta_values),
297                                                                    broadcast_bias_values),
298                                                                    fp16_mixed_precision_values),
299                                                                    act_values),
300                                                                    framework::dataset::make("DataType", DataType::F16)),
301                                                                    gpu_arch_values))
302 {
303     // Validate output
304     validate(CLAccessor(_target), _reference, rel_tolerance_f16, tolerance_num_f16);
305 }
306 
307 FIXTURE_DATA_TEST_CASE(RunSmall3D, CLGEMMMatrixMultiplyNative3DFixture<half>, framework::DatasetMode::ALL,
308                 combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
309                                                                    m_w_values,
310                                                                    m_h_values),
311                                                                    n_values),
312                                                                    k_values),
313                                                                    b_values),
314                                                                    alpha_values),
315                                                                    beta_values),
316                                                                    broadcast_bias_values),
317                                                                    fp16_mixed_precision_values),
318                                                                    act_values),
319                                                                    framework::dataset::make("DataType", DataType::F16)),
320                                                                    gpu_arch_values))
321 {
322     // Validate output
323     validate(CLAccessor(_target), _reference, rel_tolerance_f16, tolerance_num_f16);
324 }
325 
326 TEST_SUITE_END() // FP16
327 TEST_SUITE_END() // Float
328 TEST_SUITE_END() // GEMMMatrixMuliplty
329 TEST_SUITE_END() // CL
330 } // namespace validation
331 } // namespace test
332 } // namespace arm_compute