• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/BlobLifetimeManager.h"
25 #include "arm_compute/runtime/CL/CLBufferAllocator.h"
26 #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h"
27 #include "arm_compute/runtime/CL/functions/CLL2NormalizeLayer.h"
28 #include "arm_compute/runtime/MemoryGroup.h"
29 #include "arm_compute/runtime/MemoryManagerOnDemand.h"
30 #include "arm_compute/runtime/PoolManager.h"
31 #include "src/core/CL/kernels/CLFillBorderKernel.h"
32 #include "src/core/CL/kernels/CLGEMMReshapeRHSMatrixKernel.h"
33 #include "src/core/CL/kernels/CLIm2ColKernel.h"
34 #include "src/core/CL/kernels/CLL2NormalizeLayerKernel.h"
35 #include "src/core/CL/kernels/CLReductionOperationKernel.h"
36 #include "src/core/CL/kernels/CLWeightsReshapeKernel.h"
37 #include "tests/AssetsLibrary.h"
38 #include "tests/CL/CLAccessor.h"
39 #include "tests/Globals.h"
40 #include "tests/Utils.h"
41 #include "tests/framework/Asserts.h"
42 #include "tests/framework/Macros.h"
43 #include "tests/framework/datasets/Datasets.h"
44 #include "tests/validation/Validation.h"
45 #include "tests/validation/fixtures/UNIT/DynamicTensorFixture.h"
46 
47 namespace arm_compute
48 {
49 namespace test
50 {
51 namespace validation
52 {
53 namespace
54 {
55 constexpr AbsoluteTolerance<float> absolute_tolerance_float(0.0001f); /**< Absolute Tolerance value for comparing reference's output against implementation's output for DataType::F32 */
56 RelativeTolerance<float>           tolerance_f32(0.1f);               /**< Tolerance value for comparing reference's output against implementation's output for DataType::F32 */
57 constexpr float                    tolerance_num = 0.07f;             /**< Tolerance number */
58 } // namespace
59 
60 #ifndef DOXYGEN_SKIP_THIS
61 using CLL2NormLayerWrapper = SimpleFunctionWrapper<MemoryManagerOnDemand, CLL2NormalizeLayer, ICLTensor>;
62 template <>
configure(ICLTensor * src,ICLTensor * dst)63 void CLL2NormLayerWrapper::configure(ICLTensor *src, ICLTensor *dst)
64 {
65     _func.configure(src, dst, 0, 0.0001f);
66 }
67 #endif // DOXYGEN_SKIP_THIS
68 TEST_SUITE(CL)
69 TEST_SUITE(UNIT)
70 TEST_SUITE(DynamicTensor)
71 
72 using BlobMemoryManagementService        = MemoryManagementService<CLBufferAllocator, BlobLifetimeManager, PoolManager, MemoryManagerOnDemand>;
73 using CLDynamicTensorType3SingleFunction = DynamicTensorType3SingleFunction<CLTensor, CLAccessor, BlobMemoryManagementService, CLL2NormLayerWrapper>;
74 
75 /** Tests the memory manager with dynamic input and output tensors.
76  *
77  *  Create and manage the tensors needed to run a simple function. After the function is executed,
78  *  change the input and output size requesting more memory and go through the manage/allocate process.
79  *  The memory manager should be able to update the inner structures and allocate the requested memory
80  * */
81 FIXTURE_DATA_TEST_CASE(DynamicTensorType3Single, CLDynamicTensorType3SingleFunction, framework::DatasetMode::ALL,
82                        framework::dataset::zip(framework::dataset::make("Level0Shape", { TensorShape(12U, 11U, 3U), TensorShape(256U, 8U, 12U) }),
83                                                framework::dataset::make("Level1Shape", { TensorShape(67U, 31U, 15U), TensorShape(11U, 2U, 3U) })))
84 {
85     ARM_COMPUTE_EXPECT(internal_l0.size() == internal_l1.size(), framework::LogLevel::ERRORS);
86     ARM_COMPUTE_EXPECT(cross_l0.size() == cross_l1.size(), framework::LogLevel::ERRORS);
87 
88     const unsigned int internal_size = internal_l0.size();
89     const unsigned int cross_size    = cross_l0.size();
90     if(input_l0.total_size() < input_l1.total_size())
91     {
92         for(unsigned int i = 0; i < internal_size; ++i)
93         {
94             ARM_COMPUTE_EXPECT(internal_l0[i].size < internal_l1[i].size, framework::LogLevel::ERRORS);
95         }
96         for(unsigned int i = 0; i < cross_size; ++i)
97         {
98             ARM_COMPUTE_EXPECT(cross_l0[i].size < cross_l1[i].size, framework::LogLevel::ERRORS);
99         }
100     }
101     else
102     {
103         for(unsigned int i = 0; i < internal_size; ++i)
104         {
105             ARM_COMPUTE_EXPECT(internal_l0[i].size == internal_l1[i].size, framework::LogLevel::ERRORS);
106         }
107         for(unsigned int i = 0; i < cross_size; ++i)
108         {
109             ARM_COMPUTE_EXPECT(cross_l0[i].size == cross_l1[i].size, framework::LogLevel::ERRORS);
110         }
111     }
112 }
113 
114 using CLDynamicTensorType3ComplexFunction = DynamicTensorType3ComplexFunction<CLTensor, CLAccessor, BlobMemoryManagementService, CLConvolutionLayer>;
115 /** Tests the memory manager with dynamic input and output tensors.
116  *
117  *  Create and manage the tensors needed to run a complex function. After the function is executed,
118  *  change the input and output size requesting more memory and go through the manage/allocate process.
119  *  The memory manager should be able to update the inner structures and allocate the requested memory
120  * */
121 FIXTURE_DATA_TEST_CASE(DynamicTensorType3Complex, CLDynamicTensorType3ComplexFunction, framework::DatasetMode::ALL,
122                        framework::dataset::zip(framework::dataset::zip(framework::dataset::zip(framework::dataset::zip(
123                                                                                                    framework::dataset::make("InputShape", { std::vector<TensorShape>{ TensorShape(12U, 12U, 16U), TensorShape(64U, 64U, 16U) } }),
124                                                                                                    framework::dataset::make("WeightsManager", { TensorShape(3U, 3U, 16U, 5U) })),
125                                                                                                framework::dataset::make("BiasShape", { TensorShape(5U) })),
126                                                                        framework::dataset::make("OutputShape", { std::vector<TensorShape>{ TensorShape(12U, 12U, 5U), TensorShape(64U, 64U, 5U) } })),
127                                                framework::dataset::make("PadStrideInfo", { PadStrideInfo(1U, 1U, 1U, 1U) })))
128 {
129     for(unsigned int i = 0; i < num_iterations; ++i)
130     {
131         run_iteration(i);
132         validate(CLAccessor(dst_target), dst_ref, tolerance_f32, tolerance_num, absolute_tolerance_float);
133     }
134 }
135 
136 using CLDynamicTensorType2PipelineFunction = DynamicTensorType2PipelineFunction<CLTensor, CLAccessor, BlobMemoryManagementService, CLConvolutionLayer>;
137 /** Tests the memory manager with dynamic input and output tensors.
138  *
139  *  Create and manage the tensors needed to run a pipeline. After the function is executed, resize the input size and rerun.
140  */
141 FIXTURE_DATA_TEST_CASE(DynamicTensorType2Pipeline, CLDynamicTensorType2PipelineFunction, framework::DatasetMode::ALL,
142                        framework::dataset::make("InputShape", { std::vector<TensorShape>{ TensorShape(12U, 12U, 6U), TensorShape(128U, 128U, 6U) } }))
143 {
144 }
145 
146 TEST_SUITE_END() // DynamicTensor
147 TEST_SUITE_END() // UNIT
148 TEST_SUITE_END() // CL
149 } // namespace validation
150 } // namespace test
151 } // namespace arm_compute
152