• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2019 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/CLTensorAllocator.h"
25 
26 #include "arm_compute/core/utils/misc/MMappedFile.h"
27 #include "arm_compute/runtime/CL/CLScheduler.h"
28 #include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
29 #include "arm_compute/runtime/MemoryGroup.h"
30 #include "tests/CL/CLAccessor.h"
31 #include "tests/Globals.h"
32 #include "tests/framework/Asserts.h"
33 #include "tests/framework/Macros.h"
34 #include "tests/validation/Validation.h"
35 #include "tests/validation/reference/ActivationLayer.h"
36 
37 #include <memory>
38 #include <random>
39 
40 namespace arm_compute
41 {
42 namespace test
43 {
44 namespace validation
45 {
46 namespace
47 {
import_malloc_memory_helper(void * ptr,size_t size)48 cl_mem import_malloc_memory_helper(void *ptr, size_t size)
49 {
50     const cl_import_properties_arm import_properties[] =
51     {
52         CL_IMPORT_TYPE_ARM,
53         CL_IMPORT_TYPE_HOST_ARM,
54         0
55     };
56 
57     cl_int err = CL_SUCCESS;
58     cl_mem buf = clImportMemoryARM(CLKernelLibrary::get().context().get(), CL_MEM_READ_WRITE, import_properties, ptr, size, &err);
59     ARM_COMPUTE_ASSERT(err == CL_SUCCESS);
60 
61     return buf;
62 }
63 } // namespace
64 
65 TEST_SUITE(CL)
TEST_SUITE(UNIT)66 TEST_SUITE(UNIT)
67 TEST_SUITE(TensorAllocator)
68 
69 /** Validates import memory interface when importing cl buffer objects */
70 TEST_CASE(ImportMemoryBuffer, framework::DatasetMode::ALL)
71 {
72     // Init tensor info
73     const TensorInfo info(TensorShape(24U, 16U, 3U), 1, DataType::F32);
74 
75     // Allocate memory buffer
76     const size_t total_size = info.total_size();
77     auto         buf        = cl::Buffer(CLScheduler::get().context(), CL_MEM_READ_WRITE, total_size);
78 
79     // Negative case : Import nullptr
80     CLTensor t1;
81     t1.allocator()->init(info);
82     ARM_COMPUTE_EXPECT(!bool(t1.allocator()->import_memory(cl::Buffer())), framework::LogLevel::ERRORS);
83     ARM_COMPUTE_EXPECT(t1.info()->is_resizable(), framework::LogLevel::ERRORS);
84 
85     // Negative case : Import memory to a tensor that is memory managed
86     CLTensor    t2;
87     MemoryGroup mg;
88     t2.allocator()->set_associated_memory_group(&mg);
89     ARM_COMPUTE_EXPECT(!bool(t2.allocator()->import_memory(buf)), framework::LogLevel::ERRORS);
90     ARM_COMPUTE_EXPECT(t2.info()->is_resizable(), framework::LogLevel::ERRORS);
91 
92     // Negative case : Invalid buffer size
93     CLTensor         t3;
94     const TensorInfo info_neg(TensorShape(32U, 16U, 3U), 1, DataType::F32);
95     t3.allocator()->init(info_neg);
96     ARM_COMPUTE_EXPECT(!bool(t3.allocator()->import_memory(buf)), framework::LogLevel::ERRORS);
97     ARM_COMPUTE_EXPECT(t3.info()->is_resizable(), framework::LogLevel::ERRORS);
98 
99     // Positive case : Set raw pointer
100     CLTensor t4;
101     t4.allocator()->init(info);
102     ARM_COMPUTE_EXPECT(bool(t4.allocator()->import_memory(buf)), framework::LogLevel::ERRORS);
103     ARM_COMPUTE_EXPECT(!t4.info()->is_resizable(), framework::LogLevel::ERRORS);
104     ARM_COMPUTE_EXPECT(t4.cl_buffer().get() == buf.get(), framework::LogLevel::ERRORS);
105     t4.allocator()->free();
106     ARM_COMPUTE_EXPECT(t4.info()->is_resizable(), framework::LogLevel::ERRORS);
107     ARM_COMPUTE_EXPECT(t4.cl_buffer().get() != buf.get(), framework::LogLevel::ERRORS);
108 }
109 
110 /** Validates import memory interface when importing malloced memory */
TEST_CASE(ImportMemoryMalloc,framework::DatasetMode::ALL)111 TEST_CASE(ImportMemoryMalloc, framework::DatasetMode::ALL)
112 {
113     // Check if import extension is supported
114     if(!device_supports_extension(CLKernelLibrary::get().get_device(), "cl_arm_import_memory_host"))
115     {
116         return;
117     }
118     else
119     {
120         const ActivationLayerInfo act_info(ActivationLayerInfo::ActivationFunction::RELU);
121         const TensorShape         shape     = TensorShape(24U, 16U, 3U);
122         const DataType            data_type = DataType::F32;
123 
124         // Create tensor
125         const TensorInfo info(shape, 1, data_type);
126         CLTensor         tensor;
127         tensor.allocator()->init(info);
128 
129         // Create and configure activation function
130         CLActivationLayer act_func;
131         act_func.configure(&tensor, nullptr, act_info);
132 
133         // Allocate and import tensor
134         const size_t total_size_in_elems = tensor.info()->tensor_shape().total_size();
135         const size_t total_size_in_bytes = tensor.info()->total_size();
136         const size_t alignment           = CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
137         size_t       space               = total_size_in_bytes + alignment;
138         auto         raw_data            = support::cpp14::make_unique<uint8_t[]>(space);
139 
140         void *aligned_ptr = raw_data.get();
141         support::cpp11::align(alignment, total_size_in_bytes, aligned_ptr, space);
142 
143         cl::Buffer wrapped_buffer(import_malloc_memory_helper(aligned_ptr, total_size_in_bytes));
144         ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(wrapped_buffer)), framework::LogLevel::ERRORS);
145         ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
146 
147         // Fill tensor
148         std::uniform_real_distribution<float> distribution(-5.f, 5.f);
149         std::mt19937                          gen(library->seed());
150         auto                                 *typed_ptr = reinterpret_cast<float *>(aligned_ptr);
151         for(unsigned int i = 0; i < total_size_in_elems; ++i)
152         {
153             typed_ptr[i] = distribution(gen);
154         }
155 
156         // Execute function and sync
157         act_func.run();
158         CLScheduler::get().sync();
159 
160         // Validate result by checking that the input has no negative values
161         for(unsigned int i = 0; i < total_size_in_elems; ++i)
162         {
163             ARM_COMPUTE_EXPECT(typed_ptr[i] >= 0, framework::LogLevel::ERRORS);
164         }
165 
166         // Release resources
167         tensor.allocator()->free();
168         ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
169     }
170 }
171 
172 #if !defined(BARE_METAL)
173 /** Validates import memory interface when importing memory mapped objects */
TEST_CASE(ImportMemoryMappedFile,framework::DatasetMode::ALL)174 TEST_CASE(ImportMemoryMappedFile, framework::DatasetMode::ALL)
175 {
176     // Check if import extension is supported
177     if(!device_supports_extension(CLKernelLibrary::get().get_device(), "cl_arm_import_memory_host"))
178     {
179         return;
180     }
181     else
182     {
183         const ActivationLayerInfo act_info(ActivationLayerInfo::ActivationFunction::RELU);
184         const TensorShape         shape     = TensorShape(24U, 16U, 3U);
185         const DataType            data_type = DataType::F32;
186 
187         // Create tensor
188         const TensorInfo info(shape, 1, data_type);
189         CLTensor         tensor;
190         tensor.allocator()->init(info);
191 
192         // Create and configure activation function
193         CLActivationLayer act_func;
194         act_func.configure(&tensor, nullptr, act_info);
195 
196         // Get number of elements
197         const size_t total_size_in_elems = tensor.info()->tensor_shape().total_size();
198         const size_t total_size_in_bytes = tensor.info()->total_size();
199 
200         // Create file
201         std::ofstream output_file("test_mmap_import.bin", std::ios::binary | std::ios::out);
202         output_file.seekp(total_size_in_bytes - 1);
203         output_file.write("", 1);
204         output_file.close();
205 
206         // Map file
207         utils::mmap_io::MMappedFile mmapped_file("test_mmap_import.bin", 0 /** Whole file */, 0);
208         ARM_COMPUTE_EXPECT(mmapped_file.is_mapped(), framework::LogLevel::ERRORS);
209         unsigned char *data = mmapped_file.data();
210 
211         cl::Buffer wrapped_buffer(import_malloc_memory_helper(data, total_size_in_bytes));
212         ARM_COMPUTE_EXPECT(bool(tensor.allocator()->import_memory(wrapped_buffer)), framework::LogLevel::ERRORS);
213         ARM_COMPUTE_EXPECT(!tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
214 
215         // Fill tensor
216         std::uniform_real_distribution<float> distribution(-5.f, 5.f);
217         std::mt19937                          gen(library->seed());
218         auto                                 *typed_ptr = reinterpret_cast<float *>(data);
219         for(unsigned int i = 0; i < total_size_in_elems; ++i)
220         {
221             typed_ptr[i] = distribution(gen);
222         }
223 
224         // Execute function and sync
225         act_func.run();
226         CLScheduler::get().sync();
227 
228         // Validate result by checking that the input has no negative values
229         for(unsigned int i = 0; i < total_size_in_elems; ++i)
230         {
231             ARM_COMPUTE_EXPECT(typed_ptr[i] >= 0, framework::LogLevel::ERRORS);
232         }
233 
234         // Release resources
235         tensor.allocator()->free();
236         ARM_COMPUTE_EXPECT(tensor.info()->is_resizable(), framework::LogLevel::ERRORS);
237     }
238 }
239 #endif // !defined(BARE_METAL)
240 
241 /** Validates symmetric per channel quantization */
TEST_CASE(Symm8PerChannelQuantizationInfo,framework::DatasetMode::ALL)242 TEST_CASE(Symm8PerChannelQuantizationInfo, framework::DatasetMode::ALL)
243 {
244     // Create tensor
245     CLTensor                 tensor;
246     const std::vector<float> scale = { 0.25f, 1.4f, 3.2f, 2.3f, 4.7f };
247     const TensorInfo         info(TensorShape(32U, 16U), 1, DataType::QSYMM8_PER_CHANNEL, QuantizationInfo(scale));
248     tensor.allocator()->init(info);
249 
250     // Check quantization information
251     ARM_COMPUTE_EXPECT(!tensor.info()->quantization_info().empty(), framework::LogLevel::ERRORS);
252     ARM_COMPUTE_EXPECT(!tensor.info()->quantization_info().scale().empty(), framework::LogLevel::ERRORS);
253     ARM_COMPUTE_EXPECT(tensor.info()->quantization_info().scale().size() == scale.size(), framework::LogLevel::ERRORS);
254     ARM_COMPUTE_EXPECT(tensor.info()->quantization_info().offset().empty(), framework::LogLevel::ERRORS);
255 
256     CLQuantization quantization = tensor.quantization();
257     ARM_COMPUTE_ASSERT(quantization.scale != nullptr);
258     ARM_COMPUTE_ASSERT(quantization.offset != nullptr);
259 
260     // Check OpenCL quantization arrays before allocating
261     ARM_COMPUTE_EXPECT(quantization.scale->max_num_values() == 0, framework::LogLevel::ERRORS);
262     ARM_COMPUTE_EXPECT(quantization.offset->max_num_values() == 0, framework::LogLevel::ERRORS);
263 
264     // Check OpenCL quantization arrays after allocating
265     tensor.allocator()->allocate();
266     ARM_COMPUTE_EXPECT(quantization.scale->max_num_values() == scale.size(), framework::LogLevel::ERRORS);
267     ARM_COMPUTE_EXPECT(quantization.offset->max_num_values() == 0, framework::LogLevel::ERRORS);
268 
269     // Validate that the scale values are the same
270     auto  cl_scale_buffer = quantization.scale->cl_buffer();
271     void *mapped_ptr      = CLScheduler::get().queue().enqueueMapBuffer(cl_scale_buffer, CL_TRUE, CL_MAP_READ, 0, scale.size());
272     auto  cl_scale_ptr    = static_cast<float *>(mapped_ptr);
273     for(unsigned int i = 0; i < scale.size(); ++i)
274     {
275         ARM_COMPUTE_EXPECT(cl_scale_ptr[i] == scale[i], framework::LogLevel::ERRORS);
276     }
277     CLScheduler::get().queue().enqueueUnmapMemObject(cl_scale_buffer, mapped_ptr);
278 }
279 
280 TEST_SUITE_END() // TensorAllocator
281 TEST_SUITE_END() // UNIT
282 TEST_SUITE_END() // CL
283 } // namespace validation
284 } // namespace test
285 } // namespace arm_compute
286