• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "OpticalFlow.h"
25 
26 #include "GaussianPyramidHalf.h"
27 #include "Scharr.h"
28 #include "Utils.h"
29 
30 namespace arm_compute
31 {
32 namespace test
33 {
34 namespace validation
35 {
36 namespace reference
37 {
38 namespace
39 {
40 using KeyPointArray         = std::vector<KeyPoint>;
41 using InternalKeyPointArray = std::vector<InternalKeyPoint>;
42 
43 // Constants used for Lucas-Kanade Algorithm
44 constexpr int   W_BITS                = 14;
45 constexpr float D0                    = 1 << W_BITS;
46 constexpr float DETERMINANT_THRESHOLD = 1.0e-07f;
47 constexpr float EIGENVALUE_THRESHOLD  = 1.0e-04f;
48 constexpr float FLT_SCALE             = 1.0f / (1 << 20);
49 
50 // Creates an InternalKeyPointArray for tracking non-integral pixel coordinates
create_internal_keypoints(const KeyPointArray & keypoints)51 InternalKeyPointArray create_internal_keypoints(const KeyPointArray &keypoints)
52 {
53     InternalKeyPointArray internal_keypoints;
54 
55     for(auto keypoint : keypoints)
56     {
57         InternalKeyPoint internal_keypoint;
58 
59         internal_keypoint.x               = static_cast<float>(keypoint.x);
60         internal_keypoint.y               = static_cast<float>(keypoint.y);
61         internal_keypoint.tracking_status = static_cast<bool>(keypoint.tracking_status);
62 
63         internal_keypoints.push_back(internal_keypoint);
64     }
65 
66     return internal_keypoints;
67 }
68 
69 // Scale tracked points based on Pyramid level
scale_tracked_points(size_t level,size_t num_levels,bool use_initial_estimate,InternalKeyPointArray & old_points_internal,InternalKeyPointArray & new_points_internal,const KeyPointArray & old_points,const KeyPointArray & new_points_estimates)70 void scale_tracked_points(size_t level, size_t num_levels, bool use_initial_estimate,
71                           InternalKeyPointArray &old_points_internal, InternalKeyPointArray &new_points_internal,
72                           const KeyPointArray &old_points, const KeyPointArray &new_points_estimates)
73 {
74     if(level == num_levels - 1) // lowest resolution
75     {
76         const float scale = std::pow(SCALE_PYRAMID_HALF, level);
77 
78         for(size_t i = 0; i < old_points.size(); ++i)
79         {
80             old_points_internal.at(i).x               = old_points.at(i).x * scale;
81             old_points_internal.at(i).y               = old_points.at(i).y * scale;
82             old_points_internal.at(i).tracking_status = true;
83 
84             InternalKeyPoint keypoint_to_track;
85 
86             if(use_initial_estimate)
87             {
88                 keypoint_to_track.x               = new_points_estimates.at(i).x * scale;
89                 keypoint_to_track.y               = new_points_estimates.at(i).y * scale;
90                 keypoint_to_track.tracking_status = (new_points_estimates.at(i).tracking_status == 1);
91             }
92             else
93             {
94                 keypoint_to_track.x               = old_points_internal.at(i).x;
95                 keypoint_to_track.y               = old_points_internal.at(i).y;
96                 keypoint_to_track.tracking_status = true;
97             }
98 
99             new_points_internal.at(i) = keypoint_to_track;
100         }
101     }
102     else
103     {
104         for(size_t i = 0; i < old_points.size(); ++i)
105         {
106             old_points_internal.at(i).x /= SCALE_PYRAMID_HALF;
107             old_points_internal.at(i).y /= SCALE_PYRAMID_HALF;
108             new_points_internal.at(i).x /= SCALE_PYRAMID_HALF;
109             new_points_internal.at(i).y /= SCALE_PYRAMID_HALF;
110         }
111     }
112 }
113 
is_invalid_keypoint(const InternalKeyPoint & keypoint,const ValidRegion & valid_region,size_t window_dimension)114 bool is_invalid_keypoint(const InternalKeyPoint &keypoint, const ValidRegion &valid_region, size_t window_dimension)
115 {
116     const int half_window = window_dimension / 2;
117     const int x           = std::floor(keypoint.x);
118     const int y           = std::floor(keypoint.y);
119 
120     return (x - half_window < valid_region.start(0)) || (x + half_window >= valid_region.end(0) - 1) || (y - half_window < valid_region.start(1)) || (y + half_window >= valid_region.end(1) - 1);
121 }
122 
123 template <typename T>
INT_ROUND(T x,int n)124 constexpr int INT_ROUND(T x, int n)
125 {
126     return (x + (1 << (n - 1))) >> n;
127 }
128 
129 // Return the bilinear value at a specified coordinate with different border modes
130 template <typename T>
bilinear_interpolate(const SimpleTensor<T> & in,Coordinates id,float wx,float wy,BorderMode border_mode,T constant_border_value,int scale)131 int bilinear_interpolate(const SimpleTensor<T> &in, Coordinates id, float wx, float wy, BorderMode border_mode, T constant_border_value, int scale)
132 {
133     const int level = id.x();
134     const int idy   = id.y();
135 
136     const float dx   = wx;
137     const float dy   = wy;
138     const float dx_1 = 1.0f - dx;
139     const float dy_1 = 1.0f - dy;
140 
141     const T border_value = constant_border_value;
142 
143     id.set(0, level);
144     id.set(1, idy);
145     const T tl = tensor_elem_at(in, id, border_mode, border_value);
146     id.set(0, level + 1);
147     id.set(1, idy);
148     const T tr = tensor_elem_at(in, id, border_mode, border_value);
149     id.set(0, level);
150     id.set(1, idy + 1);
151     const T bl = tensor_elem_at(in, id, border_mode, border_value);
152     id.set(0, level + 1);
153     id.set(1, idy + 1);
154     const T br = tensor_elem_at(in, id, border_mode, border_value);
155 
156     // weights
157     const int w00 = roundf(dx_1 * dy_1 * D0);
158     const int w01 = roundf(dx * dy_1 * D0);
159     const int w10 = roundf(dx_1 * dy * D0);
160     const int w11 = D0 - w00 - w01 - w10;
161 
162     return static_cast<int>(INT_ROUND(tl * w00 + tr * w01 + bl * w10 + br * w11, scale));
163 }
164 
165 template <typename T>
compute_derivative(const SimpleTensor<T> & input,const InternalKeyPoint & keypoint,BorderMode border_mode,uint8_t constant_border_value,size_t window_dimension,int scale)166 std::vector<int> compute_derivative(const SimpleTensor<T> &input, const InternalKeyPoint &keypoint,
167                                     BorderMode border_mode, uint8_t constant_border_value, size_t window_dimension, int scale)
168 {
169     std::vector<int> bilinear_values;
170 
171     const int half_window = window_dimension / 2;
172 
173     float keypoint_int_x = 0;
174     float keypoint_int_y = 0;
175 
176     const float wx = std::modf(keypoint.x, &keypoint_int_x);
177     const float wy = std::modf(keypoint.y, &keypoint_int_y);
178 
179     Coordinates tl_window(static_cast<int>(keypoint_int_x) - half_window, static_cast<int>(keypoint_int_y) - half_window);
180     Coordinates br_window(static_cast<int>(keypoint_int_x) + half_window, static_cast<int>(keypoint_int_y) + half_window);
181 
182     for(int y = tl_window.y(); y <= br_window.y(); ++y)
183     {
184         for(int x = tl_window.x(); x <= br_window.x(); ++x)
185         {
186             bilinear_values.push_back(bilinear_interpolate(input, Coordinates(x, y), wx, wy, border_mode, static_cast<T>(constant_border_value), scale));
187         }
188     }
189 
190     return bilinear_values;
191 }
192 
compute_spatial_gradient_matrix(const std::vector<int> & bilinear_ix,const std::vector<int> & bilinear_iy)193 std::tuple<float, float, float> compute_spatial_gradient_matrix(const std::vector<int> &bilinear_ix, const std::vector<int> &bilinear_iy)
194 {
195     ARM_COMPUTE_ERROR_ON(bilinear_ix.size() != bilinear_iy.size());
196 
197     int iA11 = 0;
198     int iA12 = 0;
199     int iA22 = 0;
200 
201     for(size_t i = 0; i < bilinear_ix.size(); ++i)
202     {
203         int ixval = bilinear_ix[i];
204         int iyval = bilinear_iy[i];
205 
206         iA11 += ixval * ixval;
207         iA12 += ixval * iyval;
208         iA22 += iyval * iyval;
209     }
210 
211     return std::make_tuple(iA11 * FLT_SCALE, iA12 * FLT_SCALE, iA22 * FLT_SCALE);
212 }
213 
compute_temporal_gradient_vector(const std::vector<int> & bilinear_it_old,const std::vector<int> & bilinear_it_new,const std::vector<int> & bilinear_ix,const std::vector<int> & bilinear_iy)214 std::tuple<double, double> compute_temporal_gradient_vector(const std::vector<int> &bilinear_it_old,
215                                                             const std::vector<int> &bilinear_it_new,
216                                                             const std::vector<int> &bilinear_ix,
217                                                             const std::vector<int> &bilinear_iy)
218 {
219     ARM_COMPUTE_ERROR_ON(bilinear_ix.size() != bilinear_iy.size());
220     ARM_COMPUTE_ERROR_ON(bilinear_it_old.size() != bilinear_it_new.size());
221 
222     int ib1 = 0;
223     int ib2 = 0;
224 
225     for(size_t i = 0; i < bilinear_ix.size(); ++i)
226     {
227         int ixval = bilinear_ix[i];
228         int iyval = bilinear_iy[i];
229         int ival  = bilinear_it_old[i];
230         int jval  = bilinear_it_new[i];
231 
232         const int diff = jval - ival;
233 
234         ib1 += diff * ixval;
235         ib2 += diff * iyval;
236     }
237 
238     const double b1 = ib1 * FLT_SCALE;
239     const double b2 = ib2 * FLT_SCALE;
240 
241     return std::make_tuple(b1, b2);
242 }
243 } // namespace
244 
245 template <typename T>
optical_flow(const SimpleTensor<T> & old_input,const SimpleTensor<T> & new_input,const OpticalFlowParameters & params,size_t num_levels,const std::vector<KeyPoint> & old_points,const std::vector<KeyPoint> & new_points_estimates,BorderMode border_mode,uint8_t constant_border_value)246 std::vector<KeyPoint> optical_flow(const SimpleTensor<T> &old_input, const SimpleTensor<T> &new_input,
247                                    const OpticalFlowParameters &params, size_t num_levels,
248                                    const std::vector<KeyPoint> &old_points, const std::vector<KeyPoint> &new_points_estimates,
249                                    BorderMode border_mode, uint8_t constant_border_value)
250 {
251     const int    filter_size      = 3;    // scharr filter size
252     const size_t max_iterations   = 1000; // fixed by kernel
253     const size_t window_dimension = params.window_dimension;
254     const size_t num_iterations   = (params.termination == Termination::TERM_CRITERIA_EPSILON) ? max_iterations : params.num_iterations;
255 
256     KeyPointArray new_points(old_points.size());
257 
258     InternalKeyPointArray old_points_internal = create_internal_keypoints(old_points);
259     InternalKeyPointArray new_points_internal = create_internal_keypoints(new_points_estimates);
260 
261     SimpleTensor<int16_t> scharr_gx;
262     SimpleTensor<int16_t> scharr_gy;
263 
264     // Create pyramids
265     std::vector<SimpleTensor<T>> old_pyramid = gaussian_pyramid_half(old_input, border_mode, constant_border_value, num_levels);
266     std::vector<SimpleTensor<T>> new_pyramid = gaussian_pyramid_half(new_input, border_mode, constant_border_value, num_levels);
267 
268     // Iterate over each level of the pyramid
269     for(size_t idx = num_levels; idx > 0; --idx)
270     {
271         const size_t level = idx - 1;
272 
273         // Calculate scharr gradients
274         std::tie(scharr_gx, scharr_gy) = scharr<int16_t, T>(old_pyramid[level], filter_size, border_mode, constant_border_value, GradientDimension::GRAD_XY);
275 
276         scale_tracked_points(level, num_levels, params.use_initial_estimate, old_points_internal, new_points_internal, old_points, new_points_estimates);
277 
278         // Calculate valid region based on image dimensions of current pyramid level
279         const ValidRegion valid_region = shape_to_valid_region(old_pyramid[level].shape(), (border_mode == BorderMode::UNDEFINED), BorderSize(filter_size / 2));
280 
281         for(size_t i = 0; i < old_points.size(); ++i)
282         {
283             InternalKeyPoint &old_keypoint = old_points_internal.at(i);
284             InternalKeyPoint &new_keypoint = new_points_internal.at(i);
285 
286             // Helper function for untracking keypoints when on the lowest pyramid level (high resolution)
287             const auto untrack_keypoint = [&](bool predicate)
288             {
289                 if(predicate && (level == 0))
290                 {
291                     new_keypoint.tracking_status = false;
292                     return true;
293                 }
294                 return predicate;
295             };
296 
297             if(!old_keypoint.tracking_status)
298             {
299                 continue;
300             }
301 
302             // Check if tracked coordinate is outside image coordinate
303             if(untrack_keypoint(is_invalid_keypoint(old_keypoint, valid_region, window_dimension)))
304             {
305                 continue;
306             }
307 
308             // Compute spatial derivative
309             std::vector<int> bilinear_ix = compute_derivative(scharr_gx, old_keypoint, border_mode, constant_border_value, window_dimension, W_BITS);
310             std::vector<int> bilinear_iy = compute_derivative(scharr_gy, old_keypoint, border_mode, constant_border_value, window_dimension, W_BITS);
311 
312             float A11 = 0.f;
313             float A12 = 0.f;
314             float A22 = 0.f;
315             std::tie(A11, A12, A22) = compute_spatial_gradient_matrix(bilinear_ix, bilinear_iy);
316 
317             // Calculate criteria for lost tracking : Matrix A is invertible
318             // 1. The determinant of the matrix is less than DETERMINANT_THRESHOLD
319             // 2. The minimum eigenvalue of the matrix is less than EIGENVALUE_THRESHOLD
320             const float trace_A      = A11 + A22;
321             const float determinant  = A11 * A22 - A12 * A12;
322             const float discriminant = (trace_A * trace_A) - 4.0f * (determinant);
323             const float eigenvalue_A = (trace_A - std::sqrt(discriminant)) / 2.0f;
324 
325             // Divide by window_dimension squared to reduce the floating point accummulation error
326             const float eigenvalue = eigenvalue_A / (window_dimension * window_dimension);
327 
328             // Check if it is a good point to track
329             if(untrack_keypoint(eigenvalue < EIGENVALUE_THRESHOLD || determinant < DETERMINANT_THRESHOLD))
330             {
331                 continue;
332             }
333 
334             float prev_delta_x = 0.f;
335             float prev_delta_y = 0.f;
336 
337             for(size_t j = 0; j < num_iterations; ++j)
338             {
339                 // Check if tracked coordinate is outside image coordinate
340                 if(untrack_keypoint(is_invalid_keypoint(new_keypoint, valid_region, window_dimension)))
341                 {
342                     break;
343                 }
344 
345                 // Compute temporal derivative
346                 std::vector<int> bilinear_it_old = compute_derivative(old_pyramid[level], old_keypoint, border_mode, constant_border_value, window_dimension, W_BITS - 5);
347                 std::vector<int> bilinear_it_new = compute_derivative(new_pyramid[level], new_keypoint, border_mode, constant_border_value, window_dimension, W_BITS - 5);
348 
349                 double b1 = 0.f;
350                 double b2 = 0.f;
351                 std::tie(b1, b2) = compute_temporal_gradient_vector(bilinear_it_old, bilinear_it_new, bilinear_ix, bilinear_iy);
352 
353                 // Compute motion vector -> A^-1 * -b
354                 const float delta_x = (A12 * b2 - A22 * b1) / determinant;
355                 const float delta_y = (A12 * b1 - A11 * b2) / determinant;
356 
357                 // Update the new position
358                 new_keypoint.x += delta_x;
359                 new_keypoint.y += delta_y;
360 
361                 const float magnitude_squared = delta_x * delta_x + delta_y * delta_y;
362 
363                 // Check if termination criteria is EPSILON and if it is satisfied
364                 if(magnitude_squared <= params.epsilon && (params.termination == Termination::TERM_CRITERIA_EPSILON || params.termination == Termination::TERM_CRITERIA_BOTH))
365                 {
366                     break;
367                 }
368 
369                 // Check convergence analyzing the previous delta
370                 if(j > 0 && (std::fabs(delta_x + prev_delta_x) < 0.01f && std::fabs(delta_y + prev_delta_y) < 0.01f))
371                 {
372                     new_keypoint.x -= delta_x * SCALE_PYRAMID_HALF;
373                     new_keypoint.y -= delta_y * SCALE_PYRAMID_HALF;
374 
375                     break;
376                 }
377 
378                 prev_delta_x = delta_x;
379                 prev_delta_y = delta_y;
380             }
381         }
382     }
383 
384     // Copy optical flow coordinates to output vector
385     for(size_t i = 0; i < old_points.size(); ++i)
386     {
387         const InternalKeyPoint &new_keypoint = new_points_internal.at(i);
388 
389         new_points.at(i).x               = roundf(new_keypoint.x);
390         new_points.at(i).y               = roundf(new_keypoint.y);
391         new_points.at(i).tracking_status = new_keypoint.tracking_status ? 1 : 0;
392     }
393 
394     return new_points;
395 }
396 
397 template std::vector<KeyPoint> optical_flow(const SimpleTensor<uint8_t> &old_input, const SimpleTensor<uint8_t> &new_input,
398                                             const OpticalFlowParameters &params, size_t num_levels,
399                                             const std::vector<KeyPoint> &old_points, const std::vector<KeyPoint> &new_points_estimates,
400                                             BorderMode border_mode, uint8_t constant_border_value);
401 } // namespace reference
402 } // namespace validation
403 } // namespace test
404 } // namespace arm_compute
405