• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 
17 
18 
xnn_qs8_gemm_minmax_fp32_ukernel_2x4c2__sse2_ld128(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])19 void xnn_qs8_gemm_minmax_fp32_ukernel_2x4c2__sse2_ld128(
20     size_t mr,
21     size_t nc,
22     size_t kc,
23     const int8_t* restrict a,
24     size_t a_stride,
25     const void* restrict w,
26     int8_t* restrict c,
27     size_t cm_stride,
28     size_t cn_stride,
29     const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
30 {
31   assert(mr != 0);
32   assert(mr <= 2);
33   assert(nc != 0);
34   assert(kc != 0);
35   assert(kc % sizeof(int8_t) == 0);
36   assert(a != NULL);
37   assert(w != NULL);
38   assert(c != NULL);
39 
40   kc = round_up_po2(kc, 2);
41   const int8_t* a0 = a;
42   int8_t* c0 = c;
43   const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
44   int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
45   if XNN_UNPREDICTABLE(mr != 2) {
46     a1 = a0;
47     c1 = c0;
48   }
49 
50   do {
51     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
52     __m128i vacc1x0123 = vacc0x0123;
53     w = (const void*) ((const int32_t*) w + 4);
54 
55     size_t k = kc;
56     while (k >= 8 * sizeof(int8_t)) {
57       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
58       const __m128i vxa0 = _mm_srai_epi16(_mm_unpacklo_epi8(va0, va0), 8);
59       a0 += 8;
60       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
61       const __m128i vxa1 = _mm_srai_epi16(_mm_unpacklo_epi8(va1, va1), 8);
62       a1 += 8;
63 
64       const __m128i vb01 = _mm_loadu_si128((const __m128i*) w);
65       const __m128i vsb01 = _mm_cmpgt_epi8(_mm_setzero_si128(), vb01);
66       const __m128i vxb0 = _mm_unpacklo_epi8(vb01, vsb01);
67       const __m128i vxb1 = _mm_unpackhi_epi8(vb01, vsb01);
68 
69       vacc0x0123 = _mm_add_epi32(vacc0x0123,
70         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
71       vacc1x0123 = _mm_add_epi32(vacc1x0123,
72         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
73 
74       vacc0x0123 = _mm_add_epi32(vacc0x0123,
75         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
76       vacc1x0123 = _mm_add_epi32(vacc1x0123,
77         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
78       const __m128i vb23 = _mm_loadu_si128((const __m128i*) ((const int8_t*) w + 16));
79       const __m128i vsb23 = _mm_cmpgt_epi8(_mm_setzero_si128(), vb23);
80       const __m128i vxb2 = _mm_unpacklo_epi8(vb23, vsb23);
81       const __m128i vxb3 = _mm_unpackhi_epi8(vb23, vsb23);
82 
83       vacc0x0123 = _mm_add_epi32(vacc0x0123,
84         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
85       vacc1x0123 = _mm_add_epi32(vacc1x0123,
86         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
87 
88       vacc0x0123 = _mm_add_epi32(vacc0x0123,
89         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
90       vacc1x0123 = _mm_add_epi32(vacc1x0123,
91         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3));
92 
93       w = (const void*) ((const int8_t*) w + 32);
94       k -= 8 * sizeof(int8_t);
95     }
96     if (k != 0) {
97       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
98       const __m128i vxa0 = _mm_srai_epi16(_mm_unpacklo_epi8(va0, va0), 8);
99       a0 = (const int8_t*) ((uintptr_t) a0 + k);
100       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
101       const __m128i vxa1 = _mm_srai_epi16(_mm_unpacklo_epi8(va1, va1), 8);
102       a1 = (const int8_t*) ((uintptr_t) a1 + k);
103 
104       const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
105       const __m128i vxb0 = _mm_srai_epi16(_mm_unpacklo_epi8(vb0, vb0), 8);
106       w = (const void*) ((const int8_t*) w + 8);
107 
108       vacc0x0123 = _mm_add_epi32(vacc0x0123,
109         _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
110       vacc1x0123 = _mm_add_epi32(vacc1x0123,
111         _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0));
112 
113       if (k > 2 * sizeof(int8_t)) {
114         const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w);
115         const __m128i vxb1 = _mm_srai_epi16(_mm_unpacklo_epi8(vb1, vb1), 8);
116         w = (const void*) ((const int8_t*) w + 8);
117 
118         vacc0x0123 = _mm_add_epi32(vacc0x0123,
119           _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
120         vacc1x0123 = _mm_add_epi32(vacc1x0123,
121           _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1));
122 
123         if (k > 4 * sizeof(int8_t)) {
124           const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w);
125           const __m128i vxb2 = _mm_srai_epi16(_mm_unpacklo_epi8(vb2, vb2), 8);
126           w = (const void*) ((const int8_t*) w + 8);
127 
128           vacc0x0123 = _mm_add_epi32(vacc0x0123,
129             _mm_madd_epi16(_mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
130           vacc1x0123 = _mm_add_epi32(vacc1x0123,
131             _mm_madd_epi16(_mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2));
132         }
133       }
134     }
135 
136     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
137     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
138 
139     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
140     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
141     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
142 
143     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
144     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
145     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
146 
147     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
148     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
149 
150     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
151     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
152 
153     const __m128i voutput_min = _mm_load_si128((const __m128i*) params->fp32_sse2.output_min);
154     vacc01x0123 = _mm_max_epi16(vacc01x0123, voutput_min);
155 
156     __m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123);
157 
158 
159     if (nc >= 4) {
160       *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
161       vout = _mm_srli_si128(vout, 4);
162       *((uint32_t*) c1) = (uint32_t) _mm_cvtsi128_si32(vout);
163 
164       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
165       c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
166 
167       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
168       a1 = (const int8_t*) ((uintptr_t) a1 - kc);
169 
170       nc -= 4;
171     } else {
172       if (nc & 2) {
173         *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
174         c0 += 2;
175         *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2);
176         c1 += 2;
177         vout = _mm_srli_epi32(vout, 16);
178       }
179       if (nc & 1) {
180         *c0 = (int8_t) _mm_cvtsi128_si32(vout);
181         *c1 = (int8_t) _mm_extract_epi16(vout, 2);
182       }
183 
184       nc = 0;
185     }
186   } while (nc != 0);
187 }
188