• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/gemm.h>
20 #include <xnnpack/math.h>
21 
22 
23 
xnn_qu8_gemm_minmax_fp32_ukernel_2x4c2__xop_ld64(size_t mr,size_t nc,size_t kc,const uint8_t * restrict a,size_t a_stride,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])24 void xnn_qu8_gemm_minmax_fp32_ukernel_2x4c2__xop_ld64(
25     size_t mr,
26     size_t nc,
27     size_t kc,
28     const uint8_t* restrict a,
29     size_t a_stride,
30     const void* restrict w,
31     uint8_t* restrict c,
32     size_t cm_stride,
33     size_t cn_stride,
34     const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
35 {
36   assert(mr != 0);
37   assert(mr <= 2);
38   assert(nc != 0);
39   assert(kc != 0);
40   assert(kc % sizeof(uint8_t) == 0);
41   assert(a != NULL);
42   assert(w != NULL);
43   assert(c != NULL);
44 
45   kc = round_up_po2(kc, 2);
46   const uint8_t* a0 = a;
47   uint8_t* c0 = c;
48   const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride);
49   uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
50   if XNN_UNPREDICTABLE(mr != 2) {
51     a1 = a0;
52     c1 = c0;
53   }
54 
55   do {
56     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
57     __m128i vacc1x0123 = vacc0x0123;
58     w = (const void*) ((const int32_t*) w + 4);
59 
60     size_t k = kc;
61     const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
62     while (k >= 8 * sizeof(uint8_t)) {
63       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
64       const __m128i vxa0 = _mm_cvtepu8_epi16(va0);
65       a0 += 8;
66       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
67       const __m128i vxa1 = _mm_cvtepu8_epi16(va1);
68       a1 += 8;
69 
70       const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
71       const __m128i vxb0 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb0), vb_zero_point);
72 
73       vacc0x0123 = _mm_maddd_epi16(
74         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
75       vacc1x0123 = _mm_maddd_epi16(
76         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc1x0123);
77       const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 8));
78       const __m128i vxb1 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb1), vb_zero_point);
79 
80       vacc0x0123 = _mm_maddd_epi16(
81         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
82       vacc1x0123 = _mm_maddd_epi16(
83         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc1x0123);
84       const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 16));
85       const __m128i vxb2 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb2), vb_zero_point);
86 
87       vacc0x0123 = _mm_maddd_epi16(
88         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
89       vacc1x0123 = _mm_maddd_epi16(
90         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc1x0123);
91       const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((const uint8_t*) w + 24));
92       const __m128i vxb3 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb3), vb_zero_point);
93 
94       vacc0x0123 = _mm_maddd_epi16(
95         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc0x0123);
96       vacc1x0123 = _mm_maddd_epi16(
97         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc1x0123);
98 
99       w = (const void*) ((const uint8_t*) w + 32);
100       k -= 8 * sizeof(uint8_t);
101     }
102     if (k != 0) {
103       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
104       const __m128i vxa0 = _mm_cvtepu8_epi16(va0);
105       a0 = (const uint8_t*) ((uintptr_t) a0 + k);
106       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
107       const __m128i vxa1 = _mm_cvtepu8_epi16(va1);
108       a1 = (const uint8_t*) ((uintptr_t) a1 + k);
109 
110       const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
111       const __m128i vxb0 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb0), vb_zero_point);
112       w = (const void*) ((const uint8_t*) w + 8);
113 
114       vacc0x0123 = _mm_maddd_epi16(
115         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
116       vacc1x0123 = _mm_maddd_epi16(
117         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc1x0123);
118 
119       if (k > 2 * sizeof(uint8_t)) {
120         const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w);
121         const __m128i vxb1 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb1), vb_zero_point);
122         w = (const void*) ((const uint8_t*) w + 8);
123 
124         vacc0x0123 = _mm_maddd_epi16(
125           _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
126         vacc1x0123 = _mm_maddd_epi16(
127           _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc1x0123);
128 
129         if (k > 4 * sizeof(uint8_t)) {
130           const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w);
131           const __m128i vxb2 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb2), vb_zero_point);
132           w = (const void*) ((const uint8_t*) w + 8);
133 
134           vacc0x0123 = _mm_maddd_epi16(
135             _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
136           vacc1x0123 = _mm_maddd_epi16(
137             _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc1x0123);
138         }
139       }
140     }
141 
142     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
143     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
144 
145     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
146     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
147     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
148 
149     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
150     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
151     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
152 
153     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
154     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
155 
156     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
157     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
158 
159     __m128i vout = _mm_packus_epi16(vacc01x0123, vacc01x0123);
160 
161     vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
162 
163     if (nc >= 4) {
164       *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
165       *((uint32_t*) c1) = (uint32_t) _mm_extract_epi32(vout, 1);
166 
167       c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
168       c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
169 
170       a0 = (const uint8_t*) ((uintptr_t) a0 - kc);
171       a1 = (const uint8_t*) ((uintptr_t) a1 - kc);
172 
173       nc -= 4;
174     } else {
175       if (nc & 2) {
176         *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
177         c0 += 2;
178         *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2);
179         c1 += 2;
180         vout = _mm_srli_epi32(vout, 16);
181       }
182       if (nc & 1) {
183         *c0 = (uint8_t) _mm_extract_epi8(vout, 0);
184         *c1 = (uint8_t) _mm_extract_epi8(vout, 4);
185       }
186 
187       nc = 0;
188     }
189   } while (nc != 0);
190 }
191