• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/gemm.h>
20 #include <xnnpack/math.h>
21 
22 
23 
xnn_qu8_gemm_minmax_fp32_ukernel_3x4c2__xop_ld128(size_t mr,size_t nc,size_t kc,const uint8_t * restrict a,size_t a_stride,const void * restrict w,uint8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])24 void xnn_qu8_gemm_minmax_fp32_ukernel_3x4c2__xop_ld128(
25     size_t mr,
26     size_t nc,
27     size_t kc,
28     const uint8_t* restrict a,
29     size_t a_stride,
30     const void* restrict w,
31     uint8_t* restrict c,
32     size_t cm_stride,
33     size_t cn_stride,
34     const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
35 {
36   assert(mr != 0);
37   assert(mr <= 3);
38   assert(nc != 0);
39   assert(kc != 0);
40   assert(kc % sizeof(uint8_t) == 0);
41   assert(a != NULL);
42   assert(w != NULL);
43   assert(c != NULL);
44 
45   kc = round_up_po2(kc, 2);
46   const uint8_t* a0 = a;
47   uint8_t* c0 = c;
48   const uint8_t* a1 = (const uint8_t*) ((uintptr_t) a0 + a_stride);
49   uint8_t* c1 = (uint8_t*) ((uintptr_t) c0 + cm_stride);
50   if XNN_UNPREDICTABLE(mr < 2) {
51     a1 = a0;
52     c1 = c0;
53   }
54   const uint8_t* a2 = (const uint8_t*) ((uintptr_t) a1 + a_stride);
55   uint8_t* c2 = (uint8_t*) ((uintptr_t) c1 + cm_stride);
56   if XNN_UNPREDICTABLE(mr <= 2) {
57     a2 = a1;
58     c2 = c1;
59   }
60 
61   do {
62     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
63     __m128i vacc1x0123 = vacc0x0123;
64     __m128i vacc2x0123 = vacc0x0123;
65     w = (const void*) ((const int32_t*) w + 4);
66 
67     size_t k = kc;
68     const __m128i vb_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.kernel_zero_point);
69     const __m128i vzero = _mm_setzero_si128();
70     while (k >= 8 * sizeof(uint8_t)) {
71       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
72       const __m128i vxa0 = _mm_cvtepu8_epi16(va0);
73       a0 += 8;
74       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
75       const __m128i vxa1 = _mm_cvtepu8_epi16(va1);
76       a1 += 8;
77       const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
78       const __m128i vxa2 = _mm_cvtepu8_epi16(va2);
79       a2 += 8;
80 
81       const __m128i vb01 = _mm_loadu_si128((const __m128i*) w);
82       const __m128i vxb0 = _mm_sub_epi16(_mm_unpacklo_epi8(vb01, vzero), vb_zero_point);
83       const __m128i vxb1 = _mm_sub_epi16(_mm_unpackhi_epi8(vb01, vzero), vb_zero_point);
84 
85       vacc0x0123 = _mm_maddd_epi16(
86         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
87       vacc1x0123 = _mm_maddd_epi16(
88         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc1x0123);
89       vacc2x0123 = _mm_maddd_epi16(
90         _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc2x0123);
91 
92       vacc0x0123 = _mm_maddd_epi16(
93         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
94       vacc1x0123 = _mm_maddd_epi16(
95         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc1x0123);
96       vacc2x0123 = _mm_maddd_epi16(
97         _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc2x0123);
98       const __m128i vb23 = _mm_loadu_si128((const __m128i*) ((const uint8_t*) w + 16));
99       const __m128i vxb2 = _mm_sub_epi16(_mm_unpacklo_epi8(vb23, vzero), vb_zero_point);
100       const __m128i vxb3 = _mm_sub_epi16(_mm_unpackhi_epi8(vb23, vzero), vb_zero_point);
101 
102       vacc0x0123 = _mm_maddd_epi16(
103         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
104       vacc1x0123 = _mm_maddd_epi16(
105         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc1x0123);
106       vacc2x0123 = _mm_maddd_epi16(
107         _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc2x0123);
108 
109       vacc0x0123 = _mm_maddd_epi16(
110         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc0x0123);
111       vacc1x0123 = _mm_maddd_epi16(
112         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc1x0123);
113       vacc2x0123 = _mm_maddd_epi16(
114         _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc2x0123);
115 
116       w = (const void*) ((const uint8_t*) w + 32);
117       k -= 8 * sizeof(uint8_t);
118     }
119     if (k != 0) {
120       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
121       const __m128i vxa0 = _mm_cvtepu8_epi16(va0);
122       a0 = (const uint8_t*) ((uintptr_t) a0 + k);
123       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
124       const __m128i vxa1 = _mm_cvtepu8_epi16(va1);
125       a1 = (const uint8_t*) ((uintptr_t) a1 + k);
126       const __m128i va2 = _mm_loadl_epi64((const __m128i*) a2);
127       const __m128i vxa2 = _mm_cvtepu8_epi16(va2);
128       a2 = (const uint8_t*) ((uintptr_t) a2 + k);
129 
130       const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
131       const __m128i vxb0 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb0), vb_zero_point);
132       w = (const void*) ((const uint8_t*) w + 8);
133 
134       vacc0x0123 = _mm_maddd_epi16(
135         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
136       vacc1x0123 = _mm_maddd_epi16(
137         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc1x0123);
138       vacc2x0123 = _mm_maddd_epi16(
139         _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc2x0123);
140 
141       if (k > 2 * sizeof(uint8_t)) {
142         const __m128i vb1 = _mm_loadl_epi64((const __m128i*) w);
143         const __m128i vxb1 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb1), vb_zero_point);
144         w = (const void*) ((const uint8_t*) w + 8);
145 
146         vacc0x0123 = _mm_maddd_epi16(
147           _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
148         vacc1x0123 = _mm_maddd_epi16(
149           _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc1x0123);
150         vacc2x0123 = _mm_maddd_epi16(
151           _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc2x0123);
152 
153         if (k > 4 * sizeof(uint8_t)) {
154           const __m128i vb2 = _mm_loadl_epi64((const __m128i*) w);
155           const __m128i vxb2 = _mm_sub_epi16(_mm_cvtepu8_epi16(vb2), vb_zero_point);
156           w = (const void*) ((const uint8_t*) w + 8);
157 
158           vacc0x0123 = _mm_maddd_epi16(
159             _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
160           vacc1x0123 = _mm_maddd_epi16(
161             _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc1x0123);
162           vacc2x0123 = _mm_maddd_epi16(
163             _mm_shuffle_epi32(vxa2, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc2x0123);
164         }
165       }
166     }
167 
168     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
169     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
170     __m128 vscaled2x0123 = _mm_cvtepi32_ps(vacc2x0123);
171 
172     const __m128 vscale = _mm_load_ps(params->fp32_sse2.scale);
173     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
174     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
175     vscaled2x0123 = _mm_mul_ps(vscaled2x0123, vscale);
176 
177     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse2.output_max_less_zero_point);
178     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
179     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
180     vscaled2x0123 = _mm_min_ps(vscaled2x0123, voutput_max_less_zero_point);
181 
182     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
183     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
184     vacc2x0123 = _mm_cvtps_epi32(vscaled2x0123);
185 
186     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse2.output_zero_point);
187     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
188     __m128i vacc22x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc2x0123, vacc2x0123), voutput_zero_point);
189 
190     __m128i vout = _mm_packus_epi16(vacc01x0123, vacc22x0123);
191 
192     vout = _mm_max_epu8(vout, _mm_load_si128((const __m128i*) params->fp32_sse2.output_min));
193 
194     if (nc >= 4) {
195       *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
196       *((uint32_t*) c1) = (uint32_t) _mm_extract_epi32(vout, 1);
197       *((uint32_t*) c2) = (uint32_t) _mm_extract_epi32(vout, 2);
198 
199       c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride);
200       c1 = (uint8_t*) ((uintptr_t) c1 + cn_stride);
201       c2 = (uint8_t*) ((uintptr_t) c2 + cn_stride);
202 
203       a0 = (const uint8_t*) ((uintptr_t) a0 - kc);
204       a1 = (const uint8_t*) ((uintptr_t) a1 - kc);
205       a2 = (const uint8_t*) ((uintptr_t) a2 - kc);
206 
207       nc -= 4;
208     } else {
209       if (nc & 2) {
210         *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
211         c0 += 2;
212         *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout, 2);
213         c1 += 2;
214         *((uint16_t*) c2) = (uint16_t) _mm_extract_epi16(vout, 4);
215         c2 += 2;
216         vout = _mm_srli_epi32(vout, 16);
217       }
218       if (nc & 1) {
219         *c0 = (uint8_t) _mm_extract_epi8(vout, 0);
220         *c1 = (uint8_t) _mm_extract_epi8(vout, 4);
221         *c2 = (uint8_t) _mm_extract_epi8(vout, 8);
222       }
223 
224       nc = 0;
225     }
226   } while (nc != 0);
227 }
228