• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <math.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <string.h>
10 
11 #include <xnnpack.h>
12 #include <xnnpack/log.h>
13 #include <xnnpack/params.h>
14 #include <xnnpack/subgraph.h>
15 
16 
create_add_operator(const struct xnn_node * node,const struct xnn_value * values,size_t num_values,struct xnn_operator_data * opdata)17 static enum xnn_status create_add_operator(
18   const struct xnn_node* node,
19   const struct xnn_value* values,
20   size_t num_values,
21   struct xnn_operator_data* opdata)
22 {
23   assert(node->num_inputs == 2);
24   const uint32_t input1_id = node->inputs[0];
25   assert(input1_id != XNN_INVALID_VALUE_ID);
26   assert(input1_id < num_values);
27   const uint32_t input2_id = node->inputs[1];
28   assert(input2_id != XNN_INVALID_VALUE_ID);
29   assert(input2_id < num_values);
30 
31   assert(node->num_outputs == 1);
32   const uint32_t output_id = node->outputs[0];
33   assert(output_id != XNN_INVALID_VALUE_ID);
34   assert(output_id < num_values);
35 
36   enum xnn_status status;
37   switch (node->compute_type) {
38     case xnn_compute_type_fp32:
39       status = xnn_create_add_nd_f32(
40         node->activation.output_min,
41         node->activation.output_max,
42         node->flags,
43         &opdata->operator_object);
44       break;
45 #ifndef XNN_NO_F16_OPERATORS
46     case xnn_compute_type_fp16:
47       status = xnn_create_add_nd_f16(
48         node->activation.output_min,
49         node->activation.output_max,
50         node->flags,
51         &opdata->operator_object);
52       break;
53 #endif  // !defined(XNN_NO_F16_OPERATORS)
54 #ifndef XNN_NO_QS8_OPERATORS
55     case xnn_compute_type_qs8:
56     {
57       const float output_scale = values[output_id].quantization.scale;
58       const int32_t output_zero_point = values[output_id].quantization.zero_point;
59       const int8_t output_min =
60         (int8_t) lrintf(fminf(fmaxf(node->activation.output_min / output_scale + (float) output_zero_point, -128.0f), 127.0f));
61       const int8_t output_max =
62         (int8_t) lrintf(fminf(fmaxf(node->activation.output_max / output_scale + (float) output_zero_point, -128.0f), 127.0f));
63       status = xnn_create_add_nd_qs8(
64         (int8_t) values[input1_id].quantization.zero_point,
65         values[input1_id].quantization.scale,
66         (int8_t) values[input2_id].quantization.zero_point,
67         values[input2_id].quantization.scale,
68         (int8_t) output_zero_point,
69         output_scale, output_min, output_max, node->flags,
70         &opdata->operator_object);
71       break;
72     }
73 #endif  // !defined(XNN_NO_QS8_OPERATORS)
74 #ifndef XNN_NO_QU8_OPERATORS
75     case xnn_compute_type_qu8:
76     {
77       const float output_scale = values[output_id].quantization.scale;
78       const int32_t output_zero_point = values[output_id].quantization.zero_point;
79       const uint8_t output_min =
80         (uint8_t) lrintf(fminf(fmaxf(node->activation.output_min / output_scale + (float) output_zero_point, 0.0f), 255.0f));
81       const uint8_t output_max =
82         (uint8_t) lrintf(fminf(fmaxf(node->activation.output_max / output_scale + (float) output_zero_point, 0.0f), 255.0f));
83       status = xnn_create_add_nd_qu8(
84         (uint8_t) values[input1_id].quantization.zero_point,
85         values[input1_id].quantization.scale,
86         (uint8_t) values[input2_id].quantization.zero_point,
87         values[input2_id].quantization.scale,
88         (uint8_t) output_zero_point,
89         output_scale, output_min, output_max, node->flags,
90         &opdata->operator_object);
91       break;
92     }
93 #endif  // !defined(XNN_NO_QU8_OPERATORS)
94     default:
95       XNN_UNREACHABLE;
96   }
97   if (status == xnn_status_success) {
98     opdata->shape1.num_dims = values[input1_id].shape.num_dims;
99     opdata->shape2.num_dims = values[input2_id].shape.num_dims;
100     if (values[output_id].layout == xnn_layout_type_nchw) {
101       assert(values[input1_id].layout == xnn_layout_type_nchw);
102       assert(values[input2_id].layout == xnn_layout_type_nchw);
103       opdata->shape1.dim[0] = values[input1_id].shape.dim[0];
104       opdata->shape1.dim[1] = values[input1_id].shape.dim[values[input1_id].shape.num_dims - 1];
105       if (values[input1_id].shape.num_dims > 2) {
106         memcpy(&opdata->shape1.dim[2], &values[input1_id].shape.dim[1], (values[input1_id].shape.num_dims - 2) * sizeof(size_t));
107       }
108       opdata->shape2.dim[0] = values[input2_id].shape.dim[0];
109       opdata->shape2.dim[1] = values[input2_id].shape.dim[values[input2_id].shape.num_dims - 1];
110       if (values[input1_id].shape.num_dims > 2) {
111         memcpy(&opdata->shape2.dim[2], &values[input2_id].shape.dim[1], (values[input2_id].shape.num_dims - 2) * sizeof(size_t));
112       }
113     } else {
114       assert(values[output_id].layout == xnn_layout_type_nhwc);
115       assert(values[input1_id].layout == xnn_layout_type_nhwc);
116       assert(values[input2_id].layout == xnn_layout_type_nhwc);
117       memcpy(opdata->shape1.dim, values[input1_id].shape.dim, values[input1_id].shape.num_dims * sizeof(size_t));
118       memcpy(opdata->shape2.dim, values[input2_id].shape.dim, values[input2_id].shape.num_dims * sizeof(size_t));
119     }
120     opdata->inputs[0] = input1_id;
121     opdata->inputs[1] = input2_id;
122     opdata->outputs[0] = output_id;
123   }
124   return status;
125 }
126 
setup_add_operator(const struct xnn_operator_data * opdata,const struct xnn_blob * blobs,size_t num_blobs,pthreadpool_t threadpool)127 static enum xnn_status setup_add_operator(
128   const struct xnn_operator_data* opdata,
129   const struct xnn_blob* blobs,
130   size_t num_blobs,
131   pthreadpool_t threadpool)
132 {
133   const uint32_t input1_id = opdata->inputs[0];
134   assert(input1_id != XNN_INVALID_VALUE_ID);
135   assert(input1_id < num_blobs);
136 
137   const uint32_t input2_id = opdata->inputs[1];
138   assert(input2_id != XNN_INVALID_VALUE_ID);
139   assert(input2_id < num_blobs);
140 
141   const uint32_t output_id = opdata->outputs[0];
142   assert(output_id != XNN_INVALID_VALUE_ID);
143   assert(output_id < num_blobs);
144 
145   const struct xnn_blob* input1_blob = blobs + input1_id;
146   const void* input1_data = input1_blob->data;
147   assert(input1_data != NULL);
148 
149   const struct xnn_blob* input2_blob = blobs + input2_id;
150   const void* input2_data = input2_blob->data;
151   assert(input2_data != NULL);
152 
153   const struct xnn_blob* output_blob = blobs + output_id;
154   void* output_data = output_blob->data;
155   assert(output_data != NULL);
156 
157   switch (opdata->operator_object->type) {
158     case xnn_operator_type_add_nd_f32:
159       return xnn_setup_add_nd_f32(
160         opdata->operator_object,
161         opdata->shape1.num_dims,
162         opdata->shape1.dim,
163         opdata->shape2.num_dims,
164         opdata->shape2.dim,
165         input1_data, input2_data, output_data,
166         threadpool);
167 #ifndef XNN_NO_F16_OPERATORS
168     case xnn_operator_type_add_nd_f16:
169       return xnn_setup_add_nd_f16(
170         opdata->operator_object,
171         opdata->shape1.num_dims,
172         opdata->shape1.dim,
173         opdata->shape2.num_dims,
174         opdata->shape2.dim,
175         input1_data, input2_data, output_data,
176         threadpool);
177 #endif  // !defined(XNN_NO_F16_OPERATORS)
178 #ifndef XNN_NO_QS8_OPERATORS
179     case xnn_operator_type_add_nd_qs8:
180       return xnn_setup_add_nd_qs8(
181         opdata->operator_object,
182         opdata->shape1.num_dims,
183         opdata->shape1.dim,
184         opdata->shape2.num_dims,
185         opdata->shape2.dim,
186         input1_data, input2_data, output_data,
187         threadpool);
188 #endif  // !defined(XNN_NO_QS8_OPERATORS)
189 #ifndef XNN_NO_QU8_OPERATORS
190     case xnn_operator_type_add_nd_qu8:
191       return xnn_setup_add_nd_qu8(
192         opdata->operator_object,
193         opdata->shape1.num_dims,
194         opdata->shape1.dim,
195         opdata->shape2.num_dims,
196         opdata->shape2.dim,
197         input1_data, input2_data, output_data,
198         threadpool);
199 #endif  // !defined(XNN_NO_QU8_OPERATORS)
200     default:
201       XNN_UNREACHABLE;
202   }
203 }
204 
xnn_define_add2(xnn_subgraph_t subgraph,float output_min,float output_max,uint32_t input1_id,uint32_t input2_id,uint32_t output_id,uint32_t flags)205 enum xnn_status xnn_define_add2(
206   xnn_subgraph_t subgraph,
207   float output_min,
208   float output_max,
209   uint32_t input1_id,
210   uint32_t input2_id,
211   uint32_t output_id,
212   uint32_t flags)
213 {
214   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
215     xnn_log_error("failed to define %s operator: XNNPACK is not initialized",
216       xnn_node_type_to_string(xnn_node_type_add2));
217     return xnn_status_uninitialized;
218   }
219 
220   if (isnan(output_min)) {
221     xnn_log_error(
222       "failed to define %s operator with NaN output lower bound: lower bound must be non-NaN",
223       xnn_node_type_to_string(xnn_node_type_add2));
224     return xnn_status_invalid_parameter;
225   }
226 
227   if (isnan(output_max)) {
228     xnn_log_error(
229       "failed to define %s operator with NaN output upper bound: upper bound must be non-NaN",
230       xnn_node_type_to_string(xnn_node_type_add2));
231     return xnn_status_invalid_parameter;
232   }
233 
234   if (output_min >= output_max) {
235     xnn_log_error(
236       "failed to define %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
237       xnn_node_type_to_string(xnn_node_type_add2), output_min, output_max);
238     return xnn_status_invalid_parameter;
239   }
240 
241   if (input1_id >= subgraph->num_values) {
242     xnn_log_error(
243       "failed to define %s operator with the first input ID #%" PRIu32 ": invalid Value ID",
244       xnn_node_type_to_string(xnn_node_type_add2), input1_id);
245     return xnn_status_invalid_parameter;
246   }
247 
248   const struct xnn_value* input1_value = &subgraph->values[input1_id];
249   if (input1_value->type != xnn_value_type_dense_tensor) {
250     xnn_log_error(
251       "failed to define %s operator with the first input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
252       xnn_node_type_to_string(xnn_node_type_add2), input1_id, input1_value->type);
253     return xnn_status_invalid_parameter;
254   }
255 
256   switch (input1_value->datatype) {
257     case xnn_datatype_fp32:
258 #ifndef XNN_NO_QS8_OPERATORS
259     case xnn_datatype_qint8:
260 #endif  // !defined(XNN_NO_QS8_OPERATORS)
261 #ifndef XNN_NO_QU8_OPERATORS
262     case xnn_datatype_quint8:
263 #endif  // !defined(XNN_NO_QU8_OPERATORS)
264       break;
265     default:
266       xnn_log_error(
267         "failed to define %s operator with the first input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
268         xnn_node_type_to_string(xnn_node_type_add2), input1_id,
269         xnn_datatype_to_string(input1_value->datatype), input1_value->datatype);
270       return xnn_status_invalid_parameter;
271   }
272 
273   if (input2_id >= subgraph->num_values) {
274     xnn_log_error(
275       "failed to define %s operator with the second input ID #%" PRIu32 ": invalid Value ID",
276       xnn_node_type_to_string(xnn_node_type_add2), input2_id);
277     return xnn_status_invalid_parameter;
278   }
279 
280   const struct xnn_value* input2_value = &subgraph->values[input2_id];
281   if (input2_value->type != xnn_value_type_dense_tensor) {
282     xnn_log_error(
283       "failed to define %s operator with the second input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
284       xnn_node_type_to_string(xnn_node_type_add2), input2_id, input2_value->type);
285     return xnn_status_invalid_parameter;
286   }
287 
288   switch (input2_value->datatype) {
289     case xnn_datatype_fp32:
290 #ifndef XNN_NO_QS8_OPERATORS
291     case xnn_datatype_qint8:
292 #endif  // !defined(XNN_NO_QS8_OPERATORS)
293 #ifndef XNN_NO_QU8_OPERATORS
294     case xnn_datatype_quint8:
295 #endif  // !defined(XNN_NO_QU8_OPERATORS)
296       break;
297     default:
298       xnn_log_error(
299         "failed to define %s operator with the second input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
300         xnn_node_type_to_string(xnn_node_type_add2), input2_id,
301         xnn_datatype_to_string(input2_value->datatype), input2_value->datatype);
302       return xnn_status_invalid_parameter;
303   }
304 
305   if (output_id >= subgraph->num_values) {
306     xnn_log_error(
307       "failed to define %s operator with output ID #%" PRIu32 ": invalid Value ID",
308       xnn_node_type_to_string(xnn_node_type_add2), output_id);
309     return xnn_status_invalid_parameter;
310   }
311 
312   const struct xnn_value* output_value = &subgraph->values[output_id];
313   if (output_value->type != xnn_value_type_dense_tensor) {
314     xnn_log_error(
315       "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
316       xnn_node_type_to_string(xnn_node_type_add2), output_id, output_value->type);
317     return xnn_status_invalid_parameter;
318   }
319 
320   enum xnn_compute_type compute_type = xnn_compute_type_invalid;
321   switch (output_value->datatype) {
322     case xnn_datatype_fp32:
323       compute_type = xnn_compute_type_fp32;
324       break;
325 #ifndef XNN_NO_QS8_OPERATORS
326     case xnn_datatype_qint8:
327       compute_type = xnn_compute_type_qs8;
328       break;
329 #endif  // !defined(XNN_NO_QS8_OPERATORS)
330 #ifndef XNN_NO_QU8_OPERATORS
331     case xnn_datatype_quint8:
332       compute_type = xnn_compute_type_qu8;
333       break;
334 #endif  // !defined(XNN_NO_QU8_OPERATORS)
335     default:
336       xnn_log_error(
337         "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
338         xnn_node_type_to_string(xnn_node_type_add2), output_id,
339         xnn_datatype_to_string(output_value->datatype), output_value->datatype);
340       return xnn_status_invalid_parameter;
341   }
342 
343   if (input1_value->datatype != input2_value->datatype ||
344       input1_value->datatype != output_value->datatype)
345   {
346     xnn_log_error(
347       "failed to define %s operator with input IDs #%" PRIu32 " and #%" PRIu32 " and output ID #%" PRIu32
348       ": mismatching datatypes across the first input (%s), the second input (%s), and output (%s)",
349       xnn_node_type_to_string(xnn_node_type_add2), input1_id, input2_id, output_id,
350       xnn_datatype_to_string(input1_value->datatype),
351       xnn_datatype_to_string(input2_value->datatype),
352       xnn_datatype_to_string(output_value->datatype));
353     return xnn_status_invalid_parameter;
354   }
355 
356   struct xnn_node* node = xnn_subgraph_new_node(subgraph);
357   if (node == NULL) {
358     return xnn_status_out_of_memory;
359   }
360 
361   node->type = xnn_node_type_add2;
362   node->compute_type = compute_type;
363   node->activation.output_min = output_min;
364   node->activation.output_max = output_max;
365   node->num_inputs = 2;
366   node->inputs[0] = input1_id;
367   node->inputs[1] = input2_id;
368   node->num_outputs = 1;
369   node->outputs[0] = output_id;
370   node->flags = flags;
371 
372   node->create = create_add_operator;
373   node->setup = setup_add_operator;
374 
375   return xnn_status_success;
376 }
377