• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <math.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 
10 #include <xnnpack.h>
11 #include <xnnpack/log.h>
12 #include <xnnpack/params.h>
13 #include <xnnpack/subgraph.h>
14 
15 
create_argmax_pooling_operator(const struct xnn_node * node,const struct xnn_value * values,size_t num_values,struct xnn_operator_data * opdata)16 static enum xnn_status create_argmax_pooling_operator(
17   const struct xnn_node* node,
18   const struct xnn_value* values,
19   size_t num_values,
20   struct xnn_operator_data* opdata)
21 {
22   assert(node->compute_type == xnn_compute_type_fp32);
23 
24   assert(node->num_inputs == 1);
25   const uint32_t input_id = node->inputs[0];
26   assert(input_id != XNN_INVALID_VALUE_ID);
27   assert(input_id < num_values);
28 
29   assert(node->num_outputs == 2);
30   const uint32_t output_value_id = node->outputs[0];
31   assert(output_value_id != XNN_INVALID_VALUE_ID);
32   assert(output_value_id < num_values);
33   const uint32_t output_index_id = node->outputs[1];
34   assert(output_index_id != XNN_INVALID_VALUE_ID);
35   assert(output_index_id < num_values);
36 
37   const size_t channel_dim = values[input_id].shape.dim[3];
38   assert(channel_dim == values[output_value_id].shape.dim[3]);
39   assert(channel_dim == values[output_index_id].shape.dim[3]);
40 
41   const enum xnn_status status = xnn_create_argmax_pooling2d_nhwc_f32(
42     node->params.pooling_2d.padding_top,
43     node->params.pooling_2d.padding_right,
44     node->params.pooling_2d.padding_bottom,
45     node->params.pooling_2d.padding_left,
46     node->params.pooling_2d.pooling_height,
47     node->params.pooling_2d.pooling_width,
48     channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */,
49     node->flags,
50     &opdata->operator_object);
51   if (status == xnn_status_success) {
52     opdata->batch_size = values[input_id].shape.dim[0];
53     opdata->input_height = values[input_id].shape.dim[1];
54     opdata->input_width = values[input_id].shape.dim[2];
55     opdata->inputs[0] = input_id;
56     opdata->outputs[0] = output_value_id;
57     opdata->outputs[1] = output_index_id;
58   }
59   return status;
60 }
61 
setup_argmax_pooling_operator(const struct xnn_operator_data * opdata,const struct xnn_blob * blobs,size_t num_blobs,pthreadpool_t threadpool)62 static enum xnn_status setup_argmax_pooling_operator(
63   const struct xnn_operator_data* opdata,
64   const struct xnn_blob* blobs,
65   size_t num_blobs,
66   pthreadpool_t threadpool)
67 {
68   const uint32_t input_id = opdata->inputs[0];
69   assert(input_id != XNN_INVALID_VALUE_ID);
70   assert(input_id < num_blobs);
71 
72   const uint32_t output_value_id = opdata->outputs[0];
73   assert(output_value_id != XNN_INVALID_VALUE_ID);
74   assert(output_value_id < num_blobs);
75 
76   const uint32_t output_index_id = opdata->outputs[1];
77   assert(output_index_id != XNN_INVALID_VALUE_ID);
78   assert(output_index_id < num_blobs);
79 
80   const struct xnn_blob* input_blob = blobs + input_id;
81   const void* input_data = input_blob->data;
82   assert(input_data != NULL);
83 
84   const struct xnn_blob* output_value_blob = blobs + output_value_id;
85   void* output_value_data = output_value_blob->data;
86   assert(output_value_data != NULL);
87 
88   const struct xnn_blob* output_index_blob = blobs + output_index_id;
89   void* output_index_data = output_index_blob->data;
90   assert(output_index_data != NULL);
91 
92   return xnn_setup_argmax_pooling2d_nhwc_f32(
93     opdata->operator_object,
94     opdata->batch_size,
95     opdata->input_height,
96     opdata->input_width,
97     input_data,
98     output_value_data,
99     output_index_data,
100     threadpool);
101 }
102 
xnn_define_argmax_pooling_2d(xnn_subgraph_t subgraph,uint32_t input_padding_top,uint32_t input_padding_right,uint32_t input_padding_bottom,uint32_t input_padding_left,uint32_t pooling_height,uint32_t pooling_width,uint32_t input_id,uint32_t output_value_id,uint32_t output_index_id,uint32_t flags)103 enum xnn_status xnn_define_argmax_pooling_2d(
104   xnn_subgraph_t subgraph,
105   uint32_t input_padding_top,
106   uint32_t input_padding_right,
107   uint32_t input_padding_bottom,
108   uint32_t input_padding_left,
109   uint32_t pooling_height,
110   uint32_t pooling_width,
111   uint32_t input_id,
112   uint32_t output_value_id,
113   uint32_t output_index_id,
114   uint32_t flags)
115 {
116   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
117     xnn_log_error("failed to define %s operator: XNNPACK is not initialized",
118       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d));
119     return xnn_status_uninitialized;
120   }
121 
122   const uint32_t pooling_size = pooling_height * pooling_width;
123   if (pooling_size == 0) {
124     xnn_log_error(
125       "failed to define %s operator with %" PRIu32 "x%" PRIu32 " pooling size: "
126       "pooling size dimensions must be non-zero",
127       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), pooling_width, pooling_height);
128     return xnn_status_invalid_parameter;
129   }
130 
131   if (pooling_size == 1) {
132     xnn_log_error(
133       "failed to define %s operator with 1 pooling element: 1x1 pooling is meaningless",
134       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d));
135     return xnn_status_invalid_parameter;
136   }
137 
138   if (input_id >= subgraph->num_values) {
139     xnn_log_error(
140       "failed to define %s operator with input ID #%" PRIu32 ": invalid Value ID",
141       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), input_id);
142     return xnn_status_invalid_parameter;
143   }
144 
145   const struct xnn_value* input_value = &subgraph->values[input_id];
146   if (input_value->type != xnn_value_type_dense_tensor) {
147     xnn_log_error(
148       "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
149       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), input_id, input_value->type);
150     return xnn_status_invalid_parameter;
151   }
152 
153   switch (input_value->datatype) {
154     case xnn_datatype_fp32:
155       break;
156     default:
157       xnn_log_error(
158         "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
159         xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), input_id,
160         xnn_datatype_to_string(input_value->datatype), input_value->datatype);
161       return xnn_status_invalid_parameter;
162   }
163 
164   if (output_value_id >= subgraph->num_values) {
165     xnn_log_error(
166       "failed to define %s operator with output value ID #%" PRIu32 ": invalid Value ID",
167       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_value_id);
168     return xnn_status_invalid_parameter;
169   }
170 
171   const struct xnn_value* output_value_value = &subgraph->values[output_value_id];
172   if (output_value_value->type != xnn_value_type_dense_tensor) {
173     xnn_log_error(
174       "failed to define %s operator with output value ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
175       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_value_id, output_value_value->type);
176     return xnn_status_invalid_parameter;
177   }
178 
179   switch (output_value_value->datatype) {
180     case xnn_datatype_fp32:
181       break;
182     default:
183       xnn_log_error(
184         "failed to define %s operator with output value ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
185         xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_value_id,
186         xnn_datatype_to_string(output_value_value->datatype), output_value_value->datatype);
187       return xnn_status_invalid_parameter;
188   }
189 
190   if (output_index_id >= subgraph->num_values) {
191     xnn_log_error(
192       "failed to define %s operator with output index ID #%" PRIu32 ": invalid Value ID",
193       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_index_id);
194     return xnn_status_invalid_parameter;
195   }
196 
197   const struct xnn_value* output_index_value = &subgraph->values[output_index_id];
198   if (output_index_value->type != xnn_value_type_dense_tensor) {
199     xnn_log_error(
200       "failed to define %s operator with output index ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
201       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_index_id, output_index_value->type);
202     return xnn_status_invalid_parameter;
203   }
204 
205   struct xnn_node* node = xnn_subgraph_new_node(subgraph);
206   if (node == NULL) {
207     return xnn_status_out_of_memory;
208   }
209 
210   node->type = xnn_node_type_argmax_pooling_2d;
211   node->compute_type = xnn_compute_type_fp32;
212   node->params.pooling_2d.padding_top = input_padding_top;
213   node->params.pooling_2d.padding_right = input_padding_right;
214   node->params.pooling_2d.padding_bottom = input_padding_bottom;
215   node->params.pooling_2d.padding_left = input_padding_left;
216   node->params.pooling_2d.pooling_height = pooling_height;
217   node->params.pooling_2d.pooling_width = pooling_width;
218   node->num_inputs = 1;
219   node->inputs[0] = input_id;
220   node->num_outputs = 2;
221   node->outputs[0] = output_value_id;
222   node->outputs[1] = output_index_id;
223   node->flags = flags;
224 
225   node->create = create_argmax_pooling_operator;
226   node->setup = setup_argmax_pooling_operator;
227 
228   return xnn_status_success;
229 }
230