• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <math.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 
10 #include <xnnpack.h>
11 #include <xnnpack/log.h>
12 #include <xnnpack/params.h>
13 #include <xnnpack/subgraph.h>
14 
15 
create_average_pooling_operator(const struct xnn_node * node,const struct xnn_value * values,size_t num_values,struct xnn_operator_data * opdata)16 static enum xnn_status create_average_pooling_operator(
17   const struct xnn_node* node,
18   const struct xnn_value* values,
19   size_t num_values,
20   struct xnn_operator_data* opdata)
21 {
22   assert(node->compute_type == xnn_compute_type_fp32);
23 
24   assert(node->num_inputs == 1);
25   const uint32_t input_id = node->inputs[0];
26   assert(input_id != XNN_INVALID_VALUE_ID);
27   assert(input_id < num_values);
28 
29   assert(node->num_outputs == 1);
30   const uint32_t output_id = node->outputs[0];
31   assert(output_id != XNN_INVALID_VALUE_ID);
32   assert(output_id < num_values);
33 
34   const size_t channel_dim = values[input_id].shape.dim[3];
35   assert(channel_dim == values[output_id].shape.dim[3]);
36 
37   const enum xnn_status status = xnn_create_average_pooling2d_nhwc_f32(
38     node->params.pooling_2d.padding_top,
39     node->params.pooling_2d.padding_right,
40     node->params.pooling_2d.padding_bottom,
41     node->params.pooling_2d.padding_left,
42     node->params.pooling_2d.pooling_height,
43     node->params.pooling_2d.pooling_width,
44     node->params.pooling_2d.stride_height,
45     node->params.pooling_2d.stride_width,
46     channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */,
47     node->activation.output_min,
48     node->activation.output_max,
49     node->flags,
50     &opdata->operator_object);
51   if (status == xnn_status_success) {
52     opdata->batch_size = values[input_id].shape.dim[0];
53     opdata->input_height = values[input_id].shape.dim[1];
54     opdata->input_width = values[input_id].shape.dim[2];
55     opdata->inputs[0] = input_id;
56     opdata->outputs[0] = output_id;
57   }
58   return status;
59 }
60 
setup_average_pooling_operator(const struct xnn_operator_data * opdata,const struct xnn_blob * blobs,size_t num_blobs,pthreadpool_t threadpool)61 static enum xnn_status setup_average_pooling_operator(
62   const struct xnn_operator_data* opdata,
63   const struct xnn_blob* blobs,
64   size_t num_blobs,
65   pthreadpool_t threadpool)
66 {
67   const uint32_t input_id = opdata->inputs[0];
68   assert(input_id != XNN_INVALID_VALUE_ID);
69   assert(input_id < num_blobs);
70 
71   const uint32_t output_id = opdata->outputs[0];
72   assert(output_id != XNN_INVALID_VALUE_ID);
73   assert(output_id < num_blobs);
74 
75   const struct xnn_blob* input_blob = blobs + input_id;
76   const void* input_data = input_blob->data;
77   assert(input_data != NULL);
78 
79   const struct xnn_blob* output_blob = blobs + output_id;
80   void* output_data = output_blob->data;
81   assert(output_data != NULL);
82 
83   return xnn_setup_average_pooling2d_nhwc_f32(
84     opdata->operator_object,
85     opdata->batch_size,
86     opdata->input_height,
87     opdata->input_width,
88     input_data,
89     output_data,
90     threadpool);
91 }
92 
xnn_define_average_pooling_2d(xnn_subgraph_t subgraph,uint32_t input_padding_top,uint32_t input_padding_right,uint32_t input_padding_bottom,uint32_t input_padding_left,uint32_t pooling_height,uint32_t pooling_width,uint32_t stride_height,uint32_t stride_width,float output_min,float output_max,uint32_t input_id,uint32_t output_id,uint32_t flags)93 enum xnn_status xnn_define_average_pooling_2d(
94   xnn_subgraph_t subgraph,
95   uint32_t input_padding_top,
96   uint32_t input_padding_right,
97   uint32_t input_padding_bottom,
98   uint32_t input_padding_left,
99   uint32_t pooling_height,
100   uint32_t pooling_width,
101   uint32_t stride_height,
102   uint32_t stride_width,
103   float output_min,
104   float output_max,
105   uint32_t input_id,
106   uint32_t output_id,
107   uint32_t flags)
108 {
109   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
110     xnn_log_error("failed to define %s operator: XNNPACK is not initialized",
111       xnn_node_type_to_string(xnn_node_type_average_pooling_2d));
112     return xnn_status_uninitialized;
113   }
114 
115   const uint32_t pooling_size = pooling_height * pooling_width;
116   if (pooling_size == 0) {
117     xnn_log_error(
118       "failed to define %s operator with %" PRIu32 "x%" PRIu32 " pooling size: "
119       "pooling size dimensions must be non-zero",
120       xnn_node_type_to_string(xnn_node_type_average_pooling_2d), pooling_width, pooling_height);
121     return xnn_status_invalid_parameter;
122   }
123 
124   if (pooling_size == 1) {
125     xnn_log_error(
126       "failed to define %s operator with 1 pooling element: 1x1 pooling is meaningless",
127       xnn_node_type_to_string(xnn_node_type_average_pooling_2d));
128     return xnn_status_invalid_parameter;
129   }
130 
131   if (stride_height == 0 || stride_width == 0) {
132     xnn_log_error(
133       "failed to define %s operator with %" PRIu32 "x%" PRIu32 " stride: "
134       "stride dimensions must be non-zero",
135       xnn_node_type_to_string(xnn_node_type_average_pooling_2d), stride_width, stride_height);
136     return xnn_status_invalid_parameter;
137   }
138 
139   if (isnan(output_min)) {
140     xnn_log_error(
141       "failed to define %s operator with NaN output lower bound: lower bound must be non-NaN",
142       xnn_node_type_to_string(xnn_node_type_average_pooling_2d));
143     return xnn_status_invalid_parameter;
144   }
145 
146   if (isnan(output_max)) {
147     xnn_log_error(
148       "failed to define %s operator with NaN output upper bound: upper bound must be non-NaN",
149       xnn_node_type_to_string(xnn_node_type_average_pooling_2d));
150     return xnn_status_invalid_parameter;
151   }
152 
153   if (output_min >= output_max) {
154     xnn_log_error(
155       "failed to define %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
156       xnn_node_type_to_string(xnn_node_type_average_pooling_2d), output_min, output_max);
157     return xnn_status_invalid_parameter;
158   }
159 
160   const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
161   if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) {
162     if (any_padding) {
163       xnn_log_error(
164         "failed to define %s operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: "
165         "TensorFlow SAME padding can't be combined with explicit padding specification",
166         xnn_node_type_to_string(xnn_node_type_average_pooling_2d),
167         input_padding_top, input_padding_left, input_padding_bottom, input_padding_right);
168       return xnn_status_invalid_parameter;
169     }
170   }
171 
172   if (input_id >= subgraph->num_values) {
173     xnn_log_error(
174       "failed to define %s operator with input ID #%" PRIu32 ": invalid Value ID",
175       xnn_node_type_to_string(xnn_node_type_average_pooling_2d), input_id);
176     return xnn_status_invalid_parameter;
177   }
178 
179   const struct xnn_value* input_value = &subgraph->values[input_id];
180   if (input_value->type != xnn_value_type_dense_tensor) {
181     xnn_log_error(
182       "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
183       xnn_node_type_to_string(xnn_node_type_average_pooling_2d), input_id, input_value->type);
184     return xnn_status_invalid_parameter;
185   }
186 
187   switch (input_value->datatype) {
188     case xnn_datatype_fp32:
189       break;
190     default:
191       xnn_log_error(
192         "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
193         xnn_node_type_to_string(xnn_node_type_average_pooling_2d), input_id,
194         xnn_datatype_to_string(input_value->datatype), input_value->datatype);
195       return xnn_status_invalid_parameter;
196   }
197 
198   if (output_id >= subgraph->num_values) {
199     xnn_log_error(
200       "failed to define %s operator with output ID #%" PRIu32 ": invalid Value ID",
201       xnn_node_type_to_string(xnn_node_type_average_pooling_2d), output_id);
202     return xnn_status_invalid_parameter;
203   }
204 
205   const struct xnn_value* output_value = &subgraph->values[output_id];
206   if (output_value->type != xnn_value_type_dense_tensor) {
207     xnn_log_error(
208       "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
209       xnn_node_type_to_string(xnn_node_type_average_pooling_2d), output_id, output_value->type);
210     return xnn_status_invalid_parameter;
211   }
212 
213   switch (output_value->datatype) {
214     case xnn_datatype_fp32:
215       break;
216     default:
217       xnn_log_error(
218         "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
219         xnn_node_type_to_string(xnn_node_type_average_pooling_2d), output_id,
220         xnn_datatype_to_string(output_value->datatype), output_value->datatype);
221       return xnn_status_invalid_parameter;
222   }
223 
224   struct xnn_node* node = xnn_subgraph_new_node(subgraph);
225   if (node == NULL) {
226     return xnn_status_out_of_memory;
227   }
228 
229   node->type = xnn_node_type_average_pooling_2d;
230   node->compute_type = xnn_compute_type_fp32;
231   node->params.pooling_2d.padding_top = input_padding_top;
232   node->params.pooling_2d.padding_right = input_padding_right;
233   node->params.pooling_2d.padding_bottom = input_padding_bottom;
234   node->params.pooling_2d.padding_left = input_padding_left;
235   node->params.pooling_2d.pooling_height = pooling_height;
236   node->params.pooling_2d.pooling_width = pooling_width;
237   node->params.pooling_2d.stride_height = stride_height;
238   node->params.pooling_2d.stride_width = stride_width;
239   node->activation.output_min = output_min;
240   node->activation.output_max = output_max;
241   node->num_inputs = 1;
242   node->inputs[0] = input_id;
243   node->num_outputs = 1;
244   node->outputs[0] = output_id;
245   node->flags = flags;
246 
247   node->create = create_average_pooling_operator;
248   node->setup = setup_average_pooling_operator;
249 
250   return xnn_status_success;
251 }
252