• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <math.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 
10 #include <xnnpack.h>
11 #include <xnnpack/log.h>
12 #include <xnnpack/params.h>
13 #include <xnnpack/subgraph.h>
14 
15 
create_fully_connected_operator(const struct xnn_node * node,const struct xnn_value * values,size_t num_values,struct xnn_operator_data * opdata)16 static enum xnn_status create_fully_connected_operator(
17   const struct xnn_node* node,
18   const struct xnn_value* values,
19   size_t num_values,
20   struct xnn_operator_data* opdata)
21 {
22   assert(node->num_inputs >= 2);
23   assert(node->num_inputs <= 3);
24   const uint32_t input_id = node->inputs[0];
25   assert(input_id != XNN_INVALID_VALUE_ID);
26   assert(input_id < num_values);
27   const uint32_t filter_id = node->inputs[1];
28   assert(filter_id != XNN_INVALID_VALUE_ID);
29   assert(filter_id < num_values);
30 
31   assert(node->num_outputs == 1);
32   const uint32_t output_id = node->outputs[0];
33   assert(output_id != XNN_INVALID_VALUE_ID);
34   assert(output_id < num_values);
35 
36   const size_t num_input_elements = xnn_shape_multiply_all_dims(&values[node->inputs[0]].shape);
37   size_t output_channels, input_channels;
38   if (node->flags & XNN_FLAG_TRANSPOSE_WEIGHTS) {
39     input_channels = values[node->inputs[1]].shape.dim[0];
40     output_channels = values[node->inputs[1]].shape.dim[1];
41   } else {
42     output_channels = values[node->inputs[1]].shape.dim[0];
43     input_channels = values[node->inputs[1]].shape.dim[1];
44   }
45 
46   const void* filter_data = values[filter_id].data;
47   assert(filter_data != NULL);
48 
49   const void* bias_data = NULL;
50   if (node->num_inputs > 2) {
51     const uint32_t bias_id = node->inputs[2];
52     assert(bias_id != XNN_INVALID_VALUE_ID);
53     assert(bias_id < num_values);
54 
55     bias_data = values[bias_id].data;
56     assert(bias_data != NULL);
57   }
58 
59   enum xnn_status status;
60   switch (node->compute_type) {
61     case xnn_compute_type_fp32:
62       status = xnn_create_fully_connected_nc_f32(
63         input_channels,
64         output_channels,
65         input_channels /* input stride */,
66         output_channels /* output stride */,
67         filter_data,
68         bias_data,
69         node->activation.output_min,
70         node->activation.output_max,
71         node->flags /* flags */,
72         &opdata->operator_object);
73       break;
74 #ifndef XNN_NO_QS8_OPERATORS
75     case xnn_compute_type_qs8:
76     {
77       const float output_scale = values[output_id].quantization.scale;
78       const int32_t output_zero_point = values[output_id].quantization.zero_point;
79       const int8_t output_min =
80         (int8_t) lrintf(fminf(fmaxf(node->activation.output_min / output_scale + (float) output_zero_point, -128.0f), 127.0f));
81       const int8_t output_max =
82         (int8_t) lrintf(fminf(fmaxf(node->activation.output_max / output_scale + (float) output_zero_point, -128.0f), 127.0f));
83       status = xnn_create_fully_connected_nc_qs8(
84         input_channels,
85         output_channels,
86         input_channels /* input stride */,
87         output_channels /* output stride */,
88         (int8_t) values[input_id].quantization.zero_point,
89         values[input_id].quantization.scale,
90         values[filter_id].quantization.scale,
91         filter_data,
92         bias_data,
93         (int8_t) output_zero_point,
94         output_scale, output_min, output_max,
95         node->flags /* flags */,
96         &opdata->operator_object);
97       break;
98     }
99 #endif  // !defined(XNN_NO_QS8_OPERATORS)
100 #ifndef XNN_NO_QU8_OPERATORS
101     case xnn_compute_type_qu8:
102     {
103       const float output_scale = values[output_id].quantization.scale;
104       const int32_t output_zero_point = values[output_id].quantization.zero_point;
105       const uint8_t output_min =
106         (uint8_t) lrintf(fminf(fmaxf(node->activation.output_min / output_scale + (float) output_zero_point, 0.0f), 255.0f));
107       const uint8_t output_max =
108         (uint8_t) lrintf(fminf(fmaxf(node->activation.output_max / output_scale + (float) output_zero_point, 0.0f), 255.0f));
109       status = xnn_create_fully_connected_nc_qu8(
110         input_channels,
111         output_channels,
112         input_channels /* input stride */,
113         output_channels /* output stride */,
114         (uint8_t) values[input_id].quantization.zero_point,
115         values[input_id].quantization.scale,
116         (uint8_t) values[filter_id].quantization.zero_point,
117         values[filter_id].quantization.scale,
118         filter_data,
119         bias_data,
120         (uint8_t) output_zero_point,
121         output_scale, output_min, output_max,
122         node->flags /* flags */,
123         &opdata->operator_object);
124       break;
125     }
126 #endif  // !defined(XNN_NO_QU8_OPERATORS)
127     default:
128       XNN_UNREACHABLE;
129   }
130   if (status == xnn_status_success) {
131     opdata->batch_size = num_input_elements / input_channels;
132     opdata->inputs[0] = input_id;
133     opdata->outputs[0] = output_id;
134   }
135   return status;
136 }
137 
setup_fully_connected_operator(const struct xnn_operator_data * opdata,const struct xnn_blob * blobs,size_t num_blobs,pthreadpool_t threadpool)138 static enum xnn_status setup_fully_connected_operator(
139   const struct xnn_operator_data* opdata,
140   const struct xnn_blob* blobs,
141   size_t num_blobs,
142   pthreadpool_t threadpool)
143 {
144   const uint32_t input_id = opdata->inputs[0];
145   assert(input_id != XNN_INVALID_VALUE_ID);
146   assert(input_id < num_blobs);
147 
148   const uint32_t output_id = opdata->outputs[0];
149   assert(output_id != XNN_INVALID_VALUE_ID);
150   assert(output_id < num_blobs);
151 
152   const struct xnn_blob* input_blob = blobs + input_id;
153   const void* input_data = input_blob->data;
154   assert(input_data != NULL);
155 
156   const struct xnn_blob* output_blob = blobs + output_id;
157   void* output_data = output_blob->data;
158   assert(output_data != NULL);
159 
160   switch (opdata->operator_object->type) {
161     case xnn_operator_type_fully_connected_nc_f32:
162       return xnn_setup_fully_connected_nc_f32(
163         opdata->operator_object,
164         opdata->batch_size,
165         input_data,
166         output_data,
167         threadpool);
168 #ifndef XNN_NO_QS8_OPERATORS
169     case xnn_operator_type_fully_connected_nc_qs8:
170       return xnn_setup_fully_connected_nc_qs8(
171         opdata->operator_object,
172         opdata->batch_size,
173         input_data,
174         output_data,
175         threadpool);
176 #endif  // !defined(XNN_NO_QS8_OPERATORS)
177 #ifndef XNN_NO_QU8_OPERATORS
178     case xnn_operator_type_fully_connected_nc_qu8:
179       return xnn_setup_fully_connected_nc_qu8(
180         opdata->operator_object,
181         opdata->batch_size,
182         input_data,
183         output_data,
184         threadpool);
185 #endif  // !defined(XNN_NO_QU8_OPERATORS)
186     default:
187       XNN_UNREACHABLE;
188   }
189 }
190 
validate_datatypes_with_bias(enum xnn_datatype input_datatype,enum xnn_datatype filter_datatype,enum xnn_datatype bias_datatype,enum xnn_datatype output_datatype)191 static inline enum xnn_compute_type validate_datatypes_with_bias(
192   enum xnn_datatype input_datatype,
193   enum xnn_datatype filter_datatype,
194   enum xnn_datatype bias_datatype,
195   enum xnn_datatype output_datatype)
196 {
197   switch (filter_datatype) {
198     case xnn_datatype_fp32:
199       if (input_datatype == xnn_datatype_fp32 &&
200           bias_datatype == xnn_datatype_fp32 &&
201           output_datatype == xnn_datatype_fp32)
202       {
203         return xnn_compute_type_fp32;
204       }
205       break;
206 #ifndef XNN_NO_QS8_OPERATORS
207     case xnn_datatype_qint8:
208       if (input_datatype == xnn_datatype_qint8 &&
209           bias_datatype == xnn_datatype_qint32 &&
210           output_datatype == xnn_datatype_qint8)
211       {
212         return xnn_compute_type_qs8;
213       }
214       break;
215 #endif  // !defined(XNN_NO_QS8_OPERATORS)
216 #ifndef XNN_NO_QU8_OPERATORS
217     case xnn_datatype_quint8:
218       if (input_datatype == xnn_datatype_quint8 &&
219           bias_datatype == xnn_datatype_qint32 &&
220           output_datatype == xnn_datatype_quint8)
221       {
222         return xnn_compute_type_qu8;
223       }
224       break;
225 #endif  // !defined(XNN_NO_QU8_OPERATORS)
226     default:
227       XNN_UNREACHABLE;
228   }
229   return xnn_compute_type_invalid;
230 }
231 
validate_datatypes_without_bias(enum xnn_datatype input_datatype,enum xnn_datatype filter_datatype,enum xnn_datatype output_datatype)232 static inline enum xnn_compute_type validate_datatypes_without_bias(
233   enum xnn_datatype input_datatype,
234   enum xnn_datatype filter_datatype,
235   enum xnn_datatype output_datatype)
236 {
237   switch (filter_datatype) {
238     case xnn_datatype_fp32:
239       if (input_datatype == xnn_datatype_fp32 && output_datatype == xnn_datatype_fp32) {
240         return xnn_compute_type_fp32;
241       }
242       break;
243 #ifndef XNN_NO_QS8_OPERATORS
244     case xnn_datatype_qint8:
245       if (input_datatype == xnn_datatype_qint8 && output_datatype == xnn_datatype_qint8) {
246         return xnn_compute_type_qs8;
247       }
248       break;
249 #endif  // !defined(XNN_NO_QS8_OPERATORS)
250 #ifndef XNN_NO_QU8_OPERATORS
251     case xnn_datatype_quint8:
252       if (input_datatype == xnn_datatype_quint8 && output_datatype == xnn_datatype_quint8) {
253         return xnn_compute_type_qu8;
254       }
255       break;
256 #endif  // !defined(XNN_NO_QU8_OPERATORS)
257     default:
258       XNN_UNREACHABLE;
259   }
260   return xnn_compute_type_invalid;
261 }
262 
xnn_define_fully_connected(xnn_subgraph_t subgraph,float output_min,float output_max,uint32_t input_id,uint32_t filter_id,uint32_t bias_id,uint32_t output_id,uint32_t flags)263 enum xnn_status xnn_define_fully_connected(
264   xnn_subgraph_t subgraph,
265   float output_min,
266   float output_max,
267   uint32_t input_id,
268   uint32_t filter_id,
269   uint32_t bias_id,
270   uint32_t output_id,
271   uint32_t flags)
272 {
273   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
274     xnn_log_error("failed to define %s operator: XNNPACK is not initialized",
275       xnn_node_type_to_string(xnn_node_type_fully_connected));
276     return xnn_status_uninitialized;
277   }
278 
279   if (isnan(output_min)) {
280     xnn_log_error(
281       "failed to define %s operator with NaN output lower bound: lower bound must be non-NaN",
282       xnn_node_type_to_string(xnn_node_type_fully_connected));
283     return xnn_status_invalid_parameter;
284   }
285 
286   if (isnan(output_max)) {
287     xnn_log_error(
288       "failed to define %s operator with NaN output upper bound: upper bound must be non-NaN",
289       xnn_node_type_to_string(xnn_node_type_fully_connected));
290     return xnn_status_invalid_parameter;
291   }
292 
293   if (output_min >= output_max) {
294     xnn_log_error(
295       "failed to define %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
296       xnn_node_type_to_string(xnn_node_type_fully_connected), output_min, output_max);
297     return xnn_status_invalid_parameter;
298   }
299 
300   if (input_id >= subgraph->num_values) {
301     xnn_log_error(
302       "failed to define %s operator with input ID #%" PRIu32 ": invalid Value ID",
303       xnn_node_type_to_string(xnn_node_type_fully_connected), input_id);
304     return xnn_status_invalid_parameter;
305   }
306 
307   const struct xnn_value* input_value = &subgraph->values[input_id];
308   if (input_value->type != xnn_value_type_dense_tensor) {
309     xnn_log_error(
310       "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
311       xnn_node_type_to_string(xnn_node_type_fully_connected), input_id, input_value->type);
312     return xnn_status_invalid_parameter;
313   }
314 
315   switch (input_value->datatype) {
316     case xnn_datatype_fp32:
317 #ifndef XNN_NO_QS8_OPERATORS
318     case xnn_datatype_qint8:
319 #endif  // !defined(XNN_NO_QS8_OPERATORS)
320 #ifndef XNN_NO_QU8_OPERATORS
321     case xnn_datatype_quint8:
322 #endif  // !defined(XNN_NO_QS8_OPERATORS)
323       break;
324     default:
325       xnn_log_error(
326         "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
327         xnn_node_type_to_string(xnn_node_type_fully_connected), input_id,
328         xnn_datatype_to_string(input_value->datatype), input_value->datatype);
329       return xnn_status_invalid_parameter;
330   }
331 
332   if (filter_id >= subgraph->num_values) {
333     xnn_log_error(
334       "failed to define %s operator with filter ID #%" PRIu32 ": invalid Value ID",
335       xnn_node_type_to_string(xnn_node_type_fully_connected), filter_id);
336     return xnn_status_invalid_parameter;
337   }
338 
339   const struct xnn_value* filter_value = &subgraph->values[filter_id];
340   if (filter_value->type != xnn_value_type_dense_tensor) {
341     xnn_log_error(
342       "failed to define %s operator with filter ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
343       xnn_node_type_to_string(xnn_node_type_fully_connected), filter_id, filter_value->type);
344     return xnn_status_invalid_parameter;
345   }
346 
347   if (filter_value->data == NULL) {
348     xnn_log_error(
349       "failed to define %s operator with filter ID #%" PRIu32 ": non-static Value",
350       xnn_node_type_to_string(xnn_node_type_fully_connected), filter_id);
351     return xnn_status_invalid_parameter;
352   }
353 
354   switch (filter_value->datatype) {
355     case xnn_datatype_fp32:
356       break;
357 #ifndef XNN_NO_QS8_OPERATORS
358     case xnn_datatype_qint8:
359       if (filter_value->quantization.zero_point != 0) {
360         xnn_log_error(
361           "failed to define %s operator with filter ID #%" PRIu32 ": unsupported quantization zero point %" PRId32 " for datatype %s",
362           xnn_node_type_to_string(xnn_node_type_convolution_2d), filter_id,
363           filter_value->quantization.zero_point, xnn_datatype_to_string(filter_value->datatype));
364       }
365       break;
366 #endif  // !defined(XNN_NO_QS8_OPERATORS)
367 #ifndef XNN_NO_QU8_OPERATORS
368     case xnn_datatype_quint8:
369       break;
370 #endif  // !defined(XNN_NO_QU8_OPERATORS)
371     default:
372       xnn_log_error(
373         "failed to define %s operator with filter ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
374         xnn_node_type_to_string(xnn_node_type_fully_connected), filter_id,
375         xnn_datatype_to_string(filter_value->datatype), filter_value->datatype);
376       return xnn_status_invalid_parameter;
377   }
378 
379   const struct xnn_value* bias_value = NULL;
380   if (bias_id != XNN_INVALID_VALUE_ID) {
381     if (bias_id >= subgraph->num_values) {
382       xnn_log_error(
383         "failed to define %s operator with bias ID #%" PRIu32 ": invalid Value ID",
384         xnn_node_type_to_string(xnn_node_type_fully_connected), bias_id);
385       return xnn_status_invalid_parameter;
386     }
387 
388     bias_value = &subgraph->values[bias_id];
389     if (bias_value->type != xnn_value_type_dense_tensor) {
390       xnn_log_error(
391         "failed to define %s operator with bias ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
392         xnn_node_type_to_string(xnn_node_type_fully_connected), bias_id, bias_value->type);
393       return xnn_status_invalid_parameter;
394     }
395 
396     if (bias_value->data == NULL) {
397       xnn_log_error(
398         "failed to define %s operator with bias ID #%" PRIu32 ": non-static Value",
399         xnn_node_type_to_string(xnn_node_type_fully_connected), bias_id);
400       return xnn_status_invalid_parameter;
401     }
402 
403     switch (bias_value->datatype) {
404       case xnn_datatype_fp32:
405 #if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
406       case xnn_datatype_qint32:
407 #endif  // !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS)
408         break;
409       default:
410         xnn_log_error(
411           "failed to define %s operator with bias ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
412           xnn_node_type_to_string(xnn_node_type_fully_connected), bias_id,
413           xnn_datatype_to_string(bias_value->datatype), bias_value->datatype);
414         return xnn_status_invalid_parameter;
415     }
416   }
417 
418   if (output_id >= subgraph->num_values) {
419     xnn_log_error(
420       "failed to define %s operator with output ID #%" PRIu32 ": invalid Value ID",
421       xnn_node_type_to_string(xnn_node_type_fully_connected), output_id);
422     return xnn_status_invalid_parameter;
423   }
424 
425   const struct xnn_value* output_value = &subgraph->values[output_id];
426   if (output_value->type != xnn_value_type_dense_tensor) {
427     xnn_log_error(
428       "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
429       xnn_node_type_to_string(xnn_node_type_fully_connected), output_id, output_value->type);
430     return xnn_status_invalid_parameter;
431   }
432 
433   switch (output_value->datatype) {
434     case xnn_datatype_fp32:
435 #ifndef XNN_NO_QS8_OPERATORS
436     case xnn_datatype_qint8:
437 #endif  // !defined(XNN_NO_QS8_OPERATORS)
438 #ifndef XNN_NO_QU8_OPERATORS
439     case xnn_datatype_quint8:
440 #endif  // !defined(XNN_NO_QU8_OPERATORS)
441       break;
442     default:
443       xnn_log_error(
444         "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
445         xnn_node_type_to_string(xnn_node_type_fully_connected), output_id,
446         xnn_datatype_to_string(output_value->datatype), output_value->datatype);
447       return xnn_status_invalid_parameter;
448   }
449 
450   enum xnn_compute_type compute_type = xnn_compute_type_invalid;
451   if (bias_value != NULL) {
452     compute_type = validate_datatypes_with_bias(
453       input_value->datatype, filter_value->datatype, bias_value->datatype, output_value->datatype);
454     if (compute_type == xnn_compute_type_invalid) {
455       xnn_log_error(
456         "failed to define %s operator with input ID #%" PRIu32 ", filter ID #%" PRIu32 ", bias ID #%" PRIu32 ", and output ID #%" PRIu32
457         ": mismatching datatypes across input (%s), filter (%s), bias (%s), and output (%s)",
458         xnn_node_type_to_string(xnn_node_type_fully_connected), input_id, filter_id, bias_id, output_id,
459         xnn_datatype_to_string(input_value->datatype),
460         xnn_datatype_to_string(filter_value->datatype),
461         xnn_datatype_to_string(bias_value->datatype),
462         xnn_datatype_to_string(output_value->datatype));
463       return xnn_status_invalid_parameter;
464     }
465   } else {
466     compute_type = validate_datatypes_without_bias(
467       input_value->datatype, filter_value->datatype, output_value->datatype);
468     if (compute_type == xnn_compute_type_invalid) {
469       xnn_log_error(
470         "failed to define %s operator with input ID #%" PRIu32 ", filter ID #%" PRIu32 ", and output ID #%" PRIu32
471         ": mismatching datatypes across input (%s), filter (%s), and output (%s)",
472         xnn_node_type_to_string(xnn_node_type_fully_connected), input_id, filter_id, output_id,
473         xnn_datatype_to_string(input_value->datatype),
474         xnn_datatype_to_string(filter_value->datatype),
475         xnn_datatype_to_string(output_value->datatype));
476       return xnn_status_invalid_parameter;
477     }
478   }
479 
480   struct xnn_node* node = xnn_subgraph_new_node(subgraph);
481   if (node == NULL) {
482     return xnn_status_out_of_memory;
483   }
484 
485   node->type = xnn_node_type_fully_connected;
486   node->compute_type = compute_type;
487   node->activation.output_min = output_min;
488   node->activation.output_max = output_max;
489   node->num_inputs = 2 + (size_t) (bias_id != XNN_INVALID_VALUE_ID);
490   node->inputs[0] = input_id;
491   node->inputs[1] = filter_id;
492   node->inputs[2] = bias_id;
493   node->num_outputs = 1;
494   node->outputs[0] = output_id;
495   node->flags = flags;
496 
497   node->create = create_fully_connected_operator;
498   node->setup = setup_fully_connected_operator;
499 
500   return xnn_status_success;
501 }
502