• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <gtest/gtest.h>
9 
10 #include <fp16.h>
11 
12 #include <algorithm>
13 #include <cmath>
14 #include <cstddef>
15 #include <cstdlib>
16 #include <functional>
17 #include <random>
18 #include <vector>
19 
20 #include <xnnpack.h>
21 
22 
23 class PReLUOperatorTester {
24  public:
25   enum class WeightsType {
26     Default,
27     FP32,
28   };
29 
batch_size(size_t batch_size)30   inline PReLUOperatorTester& batch_size(size_t batch_size) {
31     assert(batch_size != 0);
32     this->batch_size_ = batch_size;
33     return *this;
34   }
35 
batch_size()36   inline size_t batch_size() const {
37     return this->batch_size_;
38   }
39 
channels(size_t channels)40   inline PReLUOperatorTester& channels(size_t channels) {
41     assert(channels != 0);
42     this->channels_ = channels;
43     return *this;
44   }
45 
channels()46   inline size_t channels() const {
47     return this->channels_;
48   }
49 
x_stride(size_t x_stride)50   inline PReLUOperatorTester& x_stride(size_t x_stride) {
51     assert(x_stride != 0);
52     this->x_stride_ = x_stride;
53     return *this;
54   }
55 
x_stride()56   inline size_t x_stride() const {
57     if (this->x_stride_ == 0) {
58       return this->channels_;
59     } else {
60       assert(this->x_stride_ >= this->channels_);
61       return this->x_stride_;
62     }
63   }
64 
y_stride(size_t y_stride)65   inline PReLUOperatorTester& y_stride(size_t y_stride) {
66     assert(y_stride != 0);
67     this->y_stride_ = y_stride;
68     return *this;
69   }
70 
y_stride()71   inline size_t y_stride() const {
72     if (this->y_stride_ == 0) {
73       return this->channels_;
74     } else {
75       assert(this->y_stride_ >= this->channels_);
76       return this->y_stride_;
77     }
78   }
79 
weights_type(WeightsType weights_type)80   inline PReLUOperatorTester& weights_type(WeightsType weights_type) {
81     this->weights_type_ = weights_type;
82     return *this;
83   }
84 
weights_type()85   inline WeightsType weights_type() const {
86     return this->weights_type_;
87   }
88 
iterations(size_t iterations)89   inline PReLUOperatorTester& iterations(size_t iterations) {
90     this->iterations_ = iterations;
91     return *this;
92   }
93 
iterations()94   inline size_t iterations() const {
95     return this->iterations_;
96   }
97 
TestF16()98   void TestF16() const {
99     switch (weights_type()) {
100       case WeightsType::Default:
101         break;
102       case WeightsType::FP32:
103         break;
104       default:
105         GTEST_FAIL() << "unexpected weights type";
106     }
107 
108     std::random_device random_device;
109     auto rng = std::mt19937(random_device());
110     auto f32irng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
111     auto f16irng = std::bind(fp16_ieee_from_fp32_value, f32irng);
112     auto f32wrng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.75f), rng);
113     auto f16wrng = std::bind(fp16_ieee_from_fp32_value, f32wrng);
114 
115     std::vector<uint16_t> x((batch_size() - 1) * x_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
116     std::vector<uint16_t> w(channels());
117     std::vector<float> w_as_float(channels());
118     std::vector<uint16_t> y((batch_size() - 1) * y_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
119     std::vector<float> y_ref(batch_size() * channels());
120     for (size_t iteration = 0; iteration < iterations(); iteration++) {
121       std::generate(x.begin(), x.end(), std::ref(f16irng));
122       std::generate(w.begin(), w.end(), std::ref(f16wrng));
123       std::transform(w.cbegin(), w.cend(), w_as_float.begin(), fp16_ieee_to_fp32_value);
124       std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
125 
126       // Compute reference results, without clamping.
127       for (size_t i = 0; i < batch_size(); i++) {
128         for (size_t c = 0; c < channels(); c++) {
129           const float x_value = fp16_ieee_to_fp32_value(x[i * x_stride() + c]);
130           const float w_value = w_as_float[c];
131           y_ref[i * channels() + c] = signbit(x_value) ? x_value * w_value : x_value;
132         }
133       }
134 
135       // Create, setup, run, and destroy PReLU operator.
136       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
137       xnn_operator_t prelu_op = nullptr;
138 
139       const void* negative_slope_data = w.data();
140       if (weights_type() == WeightsType::FP32) {
141         negative_slope_data = w_as_float.data();
142       }
143       uint32_t flags = 0;
144       if (weights_type() == WeightsType::FP32) {
145         flags |= XNN_FLAG_FP32_STATIC_WEIGHTS;
146       }
147       ASSERT_EQ(xnn_status_success,
148         xnn_create_prelu_nc_f16(
149           channels(), x_stride(), y_stride(),
150           negative_slope_data,
151           flags, &prelu_op));
152       ASSERT_NE(nullptr, prelu_op);
153 
154       // Smart pointer to automatically delete prelu_op.
155       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_prelu_op(prelu_op, xnn_delete_operator);
156 
157       ASSERT_EQ(xnn_status_success,
158         xnn_setup_prelu_nc_f16(
159           prelu_op,
160           batch_size(),
161           x.data(), y.data(),
162           nullptr /* thread pool */));
163 
164       ASSERT_EQ(xnn_status_success,
165         xnn_run_operator(prelu_op, nullptr /* thread pool */));
166 
167       // Verify results.
168       for (size_t i = 0; i < batch_size(); i++) {
169         for (size_t c = 0; c < channels(); c++) {
170           ASSERT_NEAR(
171               fp16_ieee_to_fp32_value(y[i * y_stride() + c]),
172               y_ref[i * channels() + c],
173               std::max(1.0e-4f, std::abs(y_ref[i * channels() + c]) * 1.0e-4f))
174             << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
175         }
176       }
177     }
178   }
179 
TestF32()180   void TestF32() const {
181     ASSERT_EQ(weights_type(), WeightsType::Default);
182 
183     std::random_device random_device;
184     auto rng = std::mt19937(random_device());
185     auto f32irng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f), rng);
186     auto f32wrng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.75f), rng);
187 
188     std::vector<float> x((batch_size() - 1) * x_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
189     std::vector<float> w(channels());
190     std::vector<float> y((batch_size() - 1) * y_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
191     std::vector<float> y_ref(batch_size() * channels());
192     for (size_t iteration = 0; iteration < iterations(); iteration++) {
193       std::generate(x.begin(), x.end(), std::ref(f32irng));
194       std::generate(w.begin(), w.end(), std::ref(f32wrng));
195       std::fill(y.begin(), y.end(), nanf(""));
196 
197       // Compute reference results, without clamping.
198       for (size_t i = 0; i < batch_size(); i++) {
199         for (size_t c = 0; c < channels(); c++) {
200           y_ref[i * channels() + c] = std::signbit(x[i * x_stride() + c]) ? x[i * x_stride() + c] * w[c] : x[i * x_stride() + c];
201         }
202       }
203 
204       // Create, setup, run, and destroy PReLU operator.
205       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
206       xnn_operator_t prelu_op = nullptr;
207 
208       ASSERT_EQ(xnn_status_success,
209         xnn_create_prelu_nc_f32(
210           channels(), x_stride(), y_stride(),
211           w.data(),
212           0, &prelu_op));
213       ASSERT_NE(nullptr, prelu_op);
214 
215       // Smart pointer to automatically delete prelu_op.
216       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_prelu_op(prelu_op, xnn_delete_operator);
217 
218       ASSERT_EQ(xnn_status_success,
219         xnn_setup_prelu_nc_f32(
220           prelu_op,
221           batch_size(),
222           x.data(), y.data(),
223           nullptr /* thread pool */));
224 
225       ASSERT_EQ(xnn_status_success,
226         xnn_run_operator(prelu_op, nullptr /* thread pool */));
227 
228       // Verify results.
229       for (size_t i = 0; i < batch_size(); i++) {
230         for (size_t c = 0; c < channels(); c++) {
231           ASSERT_NEAR(
232               y[i * y_stride() + c],
233               y_ref[i * channels() + c],
234               std::max(1.0e-6f, std::abs(y_ref[i * channels() + c]) * 1.0e-6f))
235             << "at position " << i << " / " << batch_size() << ", channel " << c << " / " << channels();
236         }
237       }
238     }
239   }
240 
241  private:
242   size_t batch_size_{1};
243   size_t channels_{1};
244   size_t x_stride_{0};
245   size_t y_stride_{0};
246   WeightsType weights_type_{WeightsType::Default};
247   size_t iterations_{15};
248 };
249